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Fig. 1: The structure of Loandra.

I. PRELIMINARIES

We briefly overview the any-time Loandra MaxSAT-solver
as it participated in the incomplete track of the 2022 MaxSAT
Evaluation, focusing especially on the differences to the 2019
and 2020 versions. All of the new changes to Loandra relate
to the preprocessing phase of the algorithm. In particular, the
solver now employs a recent extension of MaxPRE (named
MaxPRE 2.0) capable of stronger reasoning as well as out-
putting an upper bound ub on the optimal cost. More detailed
descriptions can be found in [4], [11], [10].

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses a
MaxSAT instance F consists of two CNF formulas, the hard
clauses F} and the soft clauses F,, as well a weight w,.
associated with each C' € F}. A solution to JF is an assignment
7 that satisfies F},. The cost COST(F,7) of a solution 7
is the sum of weights of the soft clauses falsified by 7. An
optimal solution is one with minimum cost over all solutions.
An unsatisfiable core x of F is a subset of soft clauses s.t.
F}y, A k is unsatisfiable.

Loandra is implemented on top of Open-WBO [12]. We
thank the developers of Open-WBO for their work.

II. STRUCTURE OF LOANDRA

Figure 1 overviews the structure of Loandra. The solver
implements core-boosted linear search [4] augmented with
tightly integrated MaxSAT preprocessing [3], [10], [11], [2].
More specifically, Loandra consists of three main components:
a) Preprocessing, b) Core-guided search and c) Linear search.

a) Preprocessing: On input F, the execution starts by
invoking the MaxPre 2.0 [10] preprocessor on F. MaxPre 2.0
is run with the technique string [u] # [uvsrgVGc], enforc-
ing a 30s time-limit on and a skip technique value of 20. In
more detail, the preprocessor runs the same “base” techniques
as in previous years (unit propagation, bounded variable elim-
ination, subsumption elimination, self-subsuming resolution,
group subsumed label elimination and binary core removal) as
well as the so called intrinsic at-most-one and TrimMaxSAT
techniques [8], [15]. The TrimMaxSAT technique is extended
to all literals rather than only literals appearing in soft clauses.

In addition to the more expressive preprocessing rules,
another novelty of applying MaxPRE 2.0 is the possibility
of obtaining and upper bound ub on COST(F). The bound
is supplied to the linear search phase. Unless MaxPre can
compute an optimal solution to JF, the preprocessed instance
P(F) is then handed to the core guided phase, reusing the
assumption variables introduced during preprocessing [3].

b) Core-guided search: CORE-GUIDED, the core-guided
phase is unchanged from previous versions of Loandra. As the
instantiation of the core-guided algorithm, we use a reimple-
mentation of PMRES [14] extended with weight aware core
extraction (WCE) [5] and clause hardening. If CORE-GUIDED
is able to find an optimal solution 7 to P(F), an optimal so-
lution REC(7) to F is reconstructed and returned. Otherwise
the final working instance P(F),, and the best found solution
7* are handed to the linear search component.

c) Linear search: LIN-SEARCH, the linear search phase
of Loandra is an implementation of the SAT/UNSAT linear
search algorithm [6], extended with solution guided phase
saving and varying resolution in the style of LinSBPS [7].
The component is for the most part the same as in the
2019 version. As the pseudo-Boolean encoding, we use the
so called generalized totalizer [9]. The initial bound B =
min{ub, COST(F,7*)} on PB-encoding is set to the min-
imum of the upper bound found by the preprocessor and the
cost of the best solution found by the core-guided phase. Note
that the linear search phase operates on the working instance
of the core-guided search. As such, the range over which it
searches is [1b, B] where 1b is the lower bound obtained by
the core-guided phase. The lower bound is implicitly main-
tained in the transformed formula, meaning that in practice,
the PB constraint is built over the range [0, B — 1b].

In the beginning of each resolution (i.e. invocation of linear
search on a subset of the soft clauses), the best known solution
T7* is minimized in order to alleviate the missinterpretation of
costs that might happen due to preprocessing in the context
of incomplete solving [11]. The minimization procedure re-



sembles ideas proposed in MaxSAT solving algorithms based
on bit-vector optimization [13]. In short, the procedure loops
over all literals in the objective funciton, attempting to assign
an increasing number of them to false (i.e. to not incur cost).

The linear phase runs until either finding an optimal solu-
tion, or running out of time, at which point a reconstruction
REC(7*) of the currently best known solution 7* to P (F),, is
returned. Notice that the reconstruction of a solution happens
only once, we use the standard, linear time, reconstruction
algorithm as implemented by MaxPre.

III. IMPLEMENTATION DETAILS

All algorithms are implemented on top of the publicly
available Open-WBO system [12] using Glucose 4.1 [1] as
the back-end SAT solver. In order to minimize I/O overhead,
we make direct use of the preprocessor interface offered by
MaxPre. The linear search algorithm uses the generalized
totalizer encoding [9] to convert the PB constraints needed
in linear search to CNF. In the evaluation, we set a 30s time
limit for the preprocessing phase and a 30 second time limit
for the core-guided phase. These limits were chosen based
on preliminary experiments. On weighted instances, the core-
guided phase is also terminated when the stratification bound
would be lowered to 1. On unweighted instances the phase
is terminated at the latest after extracting one set of disjoint
cores.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. A statically linked version of Loandra in release
mode can be built by running MAKE RS in the base folder.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments: the flag -pmreslin-cglim sets the
maximum time that the core-guided phase can run for (in
seconds). The rest of the flags resemble the flags accepted by
Open-WBO and MaxPRE; invoke ./loandra_static —help-verb
for more information.
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