
CGSS in the 2022 MaxSAT Evaluation
Hannes Ihalainen, Jeremias Berg, Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

I. INTRODUCTION

We overview the CGSS solver as it participated in the
2022 Evaluation. In short, CGSS implements the core-guided
OLL algorithm for MaxSAT, extended with weight aware
core extraction, structure sharing and selective addition of
equivalences as described in [7] and [3]. Additionally, the
solver makes use of stratification, hardening and the so-called
core-exhaustion and intrinsic atmost1 techniques described
in [6].

The solver is implemented in python, on top of PySAT [5]
and the RC2 solver [6]. The authors would like to thank the
developers of RC2 for their work. If you use CGSS in your
research, we kindly ask you cite [7].

II. PRELIMINARIES

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses, a
MaxSAT instance F consists of two CNF formulas, the hard
clauses Fh and the soft clauses Fs, as well a weight w(C)
associated with each C ∈ Fs. A solution to F is an assignment
τ that satisfies Fh. The cost of a solution τ is the sum
of weights of the soft clauses falsified by τ . An optimal
solution is one with minimum cost over all solutions. An
unsatisfiable core κ of F is a subset of soft clauses s.t. Fh∧κ
is unsatisfiable.

Without loss of generality we assume that each soft clause
is unit, containing the negation of a variable. We say that
a variable b is a blocking variable (of the instance F) if
(¬b) ∈ Fs. As assigning a blocking variable to 1 corresponds
to falsifying a soft clause, we will in the rest of the text
view cores as sets of blocking variables and extend the weight
function to blocking variables via w(b) = w((¬b)).

III. MAIN FEATURES

We overview the main features of CGSS. For a more
detailed description, we refer the reader to [7].

OLL: When solving an instance F the (basic form of the)
OLL algorithm [8], [1] iteratively extracts unsatisfiable cores
of F using a SAT-solver, and then reformulates the instance
in a way that allows exactly one of the blocking variables in
the core to be assigned to 1 (corresponding to falsifying a soft
clause) in subsequent iterations. This continues until the SAT
solver reports the reformulated instance to be satisfiable and
returns an optimal solution of the original instance.

Core reformulation. For reformulating a core κ =
{b1, . . . , bn}, the CGSS solver uses the so called totalizer [2]

b1 b2 b3 b4

d
{b1,b2}
0 , d{b1,b2}1 d

{b3,b4}
0 , d{b3,b4}1

(bκ1
0), bκ1

1 , bκ1
2 , bκ1

3

b3 b4 b5 b6

e
{b3,b4}
0 , e{b3,b4}1 e

{b5,b6}
0 , e{b5,b6}1

(bκ2
0), bκ2

1 , bκ2
2 , bκ2

3

Fig. 1: The structure of totalizers built when relaxing cores
κ1 = {b1, b2, b3, b4} (above) and κ2 = {b3, b4, b5, b6} (below).

b1 b2 b3 b4 b5 b6

d
{b1,b2}
0 , d{b1,b2}1 d

{b3,b4}
0 , d{b3,b4}1 d

{b5,b6}
0 , d{b5,b6}1

(bκ1
0), bκ1

1 , bκ1
2 , bκ1

3 (bκ2
0), bκ2

1 , bκ2
2 , bκ2

3

Fig. 2: The structure of totalizers when relaxing the cores κ1
and κ2 with structure sharing.

CNF encoding of cardinality constraints. The totalizer en-
coding can be viewed as a tree structure similar to those
depicted in Figure 1. The leafs of the tree correspond to the
variables in the core. An internal node that is the root of
a subtree with the set S ⊂ κ as leaves defines |S| = m
new variables bS0 , . . . , b

S
m−1 defined with clauses equivalent

to
(∑

b∈S b ≥ k + 1
)
→ bSk . Specificallym the root of the

full tree then defines a set bκ0 , . . . b
κ
n−1 that count the number

of variables of κ set to true by assignments satisfying the
totalizer.

Weight aware core extraction (WCE) [4] is a heuristic
designed to delay the core-reformulation steps performed by
a solver implementing OLL for as long as possible. When
extracting a new core κ, a solver using WCE will lower the
weight of each variable b ∈ κ by wκ = min{w(b) | b ∈ κ}
(this correspond to the so called clause cloning step). Af-
terwards, the core is stored and the SAT-solver asked for
another core containing variables with positive weight. The
stored cores are only reformulated when no new cores can

be found. Note that in the unweighted case (i.e. when the
weight of each variable is 1) WCE is equivalent to the so
called disjoint core technique that extracts a disjoint set of
cores before reformulating.

Structure sharing attempts to reduce the number of equiv-
alent variables introduced by the core reformulation steps
by identifying subtrees that can be shared between several
different totalizers. For a concrete example, figure 1 demon-
strates two possible totalizer structures that can be built
when relaxing the cores κ1 = {b1, b2, b3, b4} (above) and
κ2 = {b3, b4, b5, b6} (below). Both of these structures include
a subtree having b3 and b4 as leaves. The root of each of these
subtrees define separate variables (d{b3,b4}i for the top tree,
e
{b3,b4}
i for the bottom) that count the number of variables

from the set {b3, b4} set to true by assignments satisfying the
totalizers. These variables will be equivalent in all solutions to
the instance. Stated in another way, the two totalizer structures
depicted in Figure 1 are equivalent to the smaller single
structure depicted in Figure 2.

When relaxing a set of cores obtained via WCE, the CGSS
solver uses a heuristic set-covering algorithm for identifying
maximal sets of literals shared by as many cores as possible
and building totalizers that share these sets as subtrees.

Selective addition of equivalences seeks to identify counting
variables of the (shared) totalizers to which it would be useful
to add equivalence constraints that facilitate more propagation.

More precisely, consider a count variable bSk corresponding
to an internal note of a tree that is the root of a subtree
with the variables in S as leaves. For correctness of the
OLL algorithm, it suffices to add clauses equivalent to the
implication

(∑
b∈S b ≥ k + 1

)
→ bSk . While adding the other

direction of the implication (i.e. bSk →
(∑

b∈S b ≥ k + 1
)
)

could allow the SAT solver do perform more propagation, the
large number of clauses required in order to do so for every
internal node might instead result in overall deterioration of
performance.

In order to balance the potential benefits and overhead (in
the form of extra clauses) of adding both sides of the equiv-
alence defining the variables in a totalizer, CGSS attempts
to identify nodes for which the equivalence constraints are
more likely to lead to further propagation. More specifically,
for each leaf and root of a shared subtree, two values are
computed: (a) the number of additional clauses needed for
defining the full equivalence and (b) how many decisions need
to performed by the SAT solver in before the additional con-
straints result in propagation. If both of these values are below
some user provided threshold the equivalence constraints for
that particular node are added.

Bounds: The use of WCE and stratification leads to CGSS
obtaining intermediate solutions to the instance during search.
The cost of any such solution is an upper bound on the optimal
cost of the instance. CGSS stores these solutions, effectively
turning it into an any-time MaxSAT solver. At the same time,
the cores extracted during search can be used to compute a

lower bound on the optimal cost by summing the minimum
weight of variables appearing in each extracted core. The use
of both an upper and a lower bound can allow the solver to
terminate as soon as the bounds match, sometimes even before
reformulating all of the extracted cores.

IV. COMPILATION AND USAGE

CGSS is implemented on top of RC2 in the PySAT frame-
work [5], [6] in a mixture of Python and C++ and can be
found at https://bitbucket.org/coreo-group/cgss/src/master/ or
the Evaluation website. Installing and running CGSS resem-
bles installing and running RC2, please follow the readme of
the repository for more details. The readme also details the
command line parameters, the evaluation version of CGSS is
invoked by running:

py thon r c 2 . py −lamWnP [i n s t a n c e . wcnf . gz]

from the examples subfolder of the repository base folder.

REFERENCES

[1] B. Andres, B. Kaufmann, O. Matheis, and T. Schaub, “Unsatisfiability-
based optimization in clasp,” in Proc. ICLP Technical Communications,
ser. LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012, pp. 211–221.

[2] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean
cardinality constraints,” in Proc. CP, ser. Lecture Notes in Computer
Science, vol. 2833. Springer, 2003, pp. 108–122.

[3] J. Berg and M. Järvisalo, “Weight-aware core extraction in SAT-based
MaxSAT solving,” in Proc. CP, ser. Lecture Notes in Computer Science,
2017, to appear.

[4] J. Berg and M. Järvisalo, “Weight-aware core extraction in SAT-based
MaxSAT solving,” in Proc. CP, ser. Lecture Notes in Computer Science,
vol. 10416. Springer, 2017, pp. 652–670.

[5] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

[6] ——, “RC2: An efficient MaxSAT solver,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 11, no. 1, pp. 53–64, 2019.

[7] H. Ihalainen, J. Berg, and M. Järvisalo, “Refined core relaxation for core-
guided maxsat solving,” in CP, ser. LIPIcs, vol. 210. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pp. 28:1–28:19.

[8] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 564–573.

