## MaxSAT Evaluation 2021

Fahiem BacchusJeremias BergMatti JärvisaloRuben MartinsUniversity TorontoUniversity HelsinkiUniversity HelsinkiCMU

https://maxsat-evaluations.github.io/

SAT 2021, July 8, 2021

# What is Maximum Satisfiability?

- Maximum Satisfiability (MaxSAT):
  - Clauses in the formula are either soft or hard
  - Hard clauses: must be satisfied
  - Soft clauses: **desirable** to be satisfied
  - Soft clauses may have weights
- ► **Goal**: Maximize (minimize) the sum of the weights of satisfied (unsatisfied) soft clauses

# Setup

Same structure as the one used in MaxSAT Evaluations 2017-2020:

- Source disclosure requirement:
  - Increase the dissemination of solver development
- ► Solver description using IEEE Proceedings style:
  - Better understanding of the techniques used by each solver
- ► Benchmark description using IEEE Proceedings style
  - Better understanding of the nature of each benchmark

Descriptions collected in proceeding, published at MSE website.

# Setup

Same structure as the one used in MaxSAT Evaluations 2017-2020:

- Source disclosure requirement:
  - Increase the dissemination of solver development
- ► Solver description using IEEE Proceedings style:
  - Better understanding of the techniques used by each solver
- ► Benchmark description using IEEE Proceedings style
  - Better understanding of the nature of each benchmark
- Descriptions collected in proceeding, published at MSE website.

# **New features**

New benchmark selection

- Filter benchmarks known to have optimum cost 0 and known random domains.
  - ▶ 48 previously unknown 0 cost instances in the evaluation sets.
- For every other domain, randomly sample up to 12 (600/#domains) benchmarks.
  - Prioritize benchmarks that have not appeared in MSE 18-20.
  - Sample twice as many (24) from domains new for this year.
- 73% of the benchmarks in the complete track have not been seen in the last three years!

# **New features**

New benchmark selection

- Filter benchmarks known to have optimum cost 0 and known random domains.
  - ▶ 48 previously unknown 0 cost instances in the evaluation sets.
- ► For every other domain, randomly sample up to 12 (600/#domains) benchmarks.
  - Prioritize benchmarks that have not appeared in MSE 18-20
  - Sample twice as many (24) from domains new for this year.
- 73% of the benchmarks in the complete track have not been seen in the last three years!

# **New features**

New benchmark selection

- Filter benchmarks known to have optimum cost 0 and known random domains.
  - ▶ 48 previously unknown 0 cost instances in the evaluation sets.
- ► For every other domain, randomly sample up to 12 (600/#domains) benchmarks.
  - Prioritize benchmarks that have not appeared in MSE 18-20
  - Sample twice as many (24) from domains new for this year.
- 73% of the benchmarks in the complete track have not been seen in the last three years!

# New(ish) features

v 1 -2 -3 4 -5 .... -4567 4568 ... → v 10010....01....

## ► Compact v-line:

- Print the model as a sequence of '0' and '1' characters instead of using variable numbers
- Significant reduction in the size of the logs

## Incomplete score:

- Consider the best known solution (instead of the best solution found by the incomplete solvers)
- Keep a database of best known solution and update it periodically

# New(ish) features

 $v \ 1 \ -2 \ -3 \ 4 \ -5 \ \dots \ -4567 \ 4568 \ \dots \ \longrightarrow v \ 10010 \dots 01 \dots$ 

## Compact v-line:

- Print the model as a sequence of '0' and '1' characters instead of using variable numbers
- Significant reduction in the size of the logs

## Incomplete score:

- Consider the best known solution (instead of the best solution found by the incomplete solvers)
- Keep a database of best known solution and update it periodically
  - Can be found at MaxSAT Lib: http://www.cs.toronto.edu/maxsat-lib/

# **Evaluation tracks**

Evaluation tracks:

- ► Complete:
  - Weighted
  - Unweighted

▶ No distinction between industrial and crafted benchmarks

- Incomplete:
  - Weighted
  - Unweighted

# **Evaluation tracks**

Evaluation tracks:

- ► Complete:
  - Weighted
  - Unweighted
- No distinction between industrial and crafted benchmarks
- ► Incomplete:
  - Weighted
  - Unweighted

# **Evaluation tracks**

Evaluation tracks:

- ► Complete:
  - Weighted
  - Unweighted
- No distinction between industrial and crafted benchmarks
- ► Incomplete:
  - Weighted
  - Unweighted

## **Execution environment**

MSE 2021 was run on the StarExec cluster:

- https://www.starexec.org/
- ▶ Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
- ▶ 10240 KB Cache, 128 GB Memory
- Two solvers per node

Execution environment:

- ► Complete:
  - ► Time limit: 3600 seconds
  - Memory limit: 32 GB
- ► Incomplete track:
  - ► Two time limits: 60 seconds and 300 seconds
  - ► Memory limit: 32 GB

## Complete track:

## As described earlier.

weighted track: 623 benchmarks

unweighted track: 561 benchmarks

#### Incomplete track:

- Hard instances of the complete track.
- weighted track: 151 instances
- unweighted track: 155 benchmarks

► Complete track:

- As described earlier.
- weighted track: 623 benchmarks
- unweighted track: 561 benchmarks

► Incomplete track:

Hard instances of the complete track.

weighted track: 151 instances

unweighted track: 155 benchmarks

► Complete track:

- As described earlier.
- weighted track: 623 benchmarks
- unweighted track: 561 benchmarks

## Incomplete track:

- ► Hard instances of the complete track.
  - Instances that cannot be solved optimally in 300 seconds by any participants of the complete tracks.

weighted track: 151 instances

unweighted track: 155 benchmarks

► Complete track:

- As described earlier.
- weighted track: 623 benchmarks
- unweighted track: 561 benchmarks

## Incomplete track:

- ► Hard instances of the complete track.
  - Instances that cannot be solved optimally in 300 seconds by any participants of the complete tracks.
- weighted track: 151 instances
- unweighted track: 155 benchmarks

# New benchmarks

- Planning with Learned Binarized Neural Networks
- University Course Timetabling
- ► Learning Optimal Decision Trees and Boosted Trees
- Functional Sequences Maximizing the Sustained Switching Activity in a Pipelined Processor

Thank you to everyone who submitted benchmarks!

## New benchmarks

## MaxSAT is being used in many applications!

- ▶ 4 new domains this year
- Benchmark size is getting large:
  - ► All benchmarks **22 GB** (after gzip compression)
  - ► A challenge especially for incomplete solvers.

# Complete Track

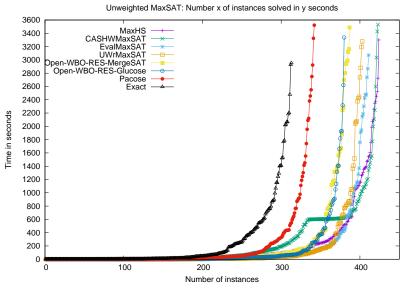
MaxSAT approaches in MSE 2021:

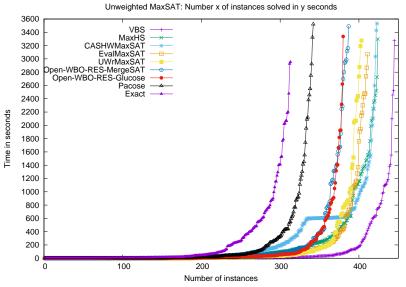
| Solver            | Hitting Set  | Unsat-based  | Sat-Unsat    |
|-------------------|--------------|--------------|--------------|
| EvalMaxSAT (2020) |              | $\checkmark$ |              |
| MaxHS             | $\checkmark$ |              |              |
| Exact             |              | ✓(PB-based)  |              |
| CASHWMaxSAT       |              | $\checkmark$ |              |
| Pacose (2020)     |              |              | $\checkmark$ |
| UWrMaxSAT         |              | $\checkmark$ | $\checkmark$ |
| Open-WBO          |              | $\checkmark$ |              |

► Diverse approaches in MaxSAT!

► Each approach is important and can solve different applications!

New and/or improved solvers:


- MaxHS by Fahiem Bacchus, University of Toronto Improvements in the detection of abstract cores. Uses Cadical as the underlying SAT solver.
- UWrMaxSAT by Marek Piotrów, University of Wroclaw Extended with generalized boolean multilevel optimization and a better detection of reusable cardinality structures.
- Exact (new) by Jo Devriendt, KU Leuven Uses cutting-planes learning (CDCPL) and an OLL-like procedure extended to PBO.
- CASHWMaxSAT (new) by Zhendong Lei et al. Based on UWrMaxSAT. Solves small instances with an IP solver.


| Solver | #Solved | Time (Avg) |
|--------|---------|------------|
|        |         |            |
|        |         |            |
|        |         |            |

| Solver     | #Solved | Time (Avg) |
|------------|---------|------------|
|            |         |            |
|            |         |            |
| EvalMaxSAT | 411     | 145.48     |

| Solver      | #Solved | Time (Avg) |
|-------------|---------|------------|
|             |         |            |
| CASHWMaxSAT | 423     | 241.41     |
| EvalMaxSAT  | 411     | 145.48     |

| Solver      | #Solved | Time (Avg) |
|-------------|---------|------------|
| MaxHS       | 424     | 194.62     |
| CASHWMaxSAT | 423     | 241.41     |
| EvalMaxSAT  | 411     | 145.48     |

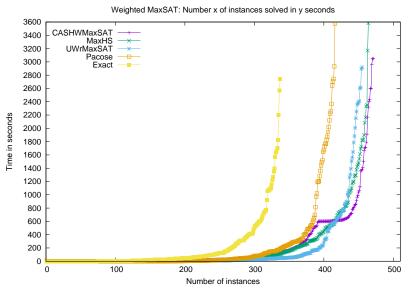


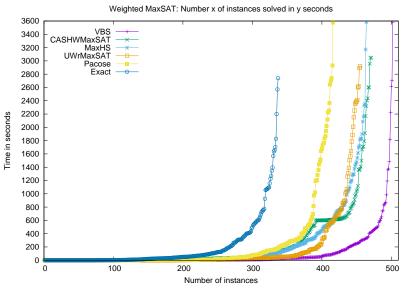


- ► Similar performance with respect to best solvers of latest years:
  - ▶ 2021: MaxHS solved 424 instances, 194.62 seconds (average)
  - ▶ 2020: MaxHS solved 425 instances, 192.35 seconds (average)
  - 2018: RC2 solved 399 instances, 169.99 seconds (average)
- ► VBS solves 445 instances:
  - VBS is getting closer to the best solver
  - Only 21 more instances!
- Closer look at the VBS:

| UWrMaxSAT            | 98 | MaxHS                 | 60 |
|----------------------|----|-----------------------|----|
| EvalMaxSAT           | 98 | CASHWMaxSAT           | 23 |
| Open-WBO-RES-Glucose | 88 | Open-WBO-RES-MergeSAT | 9  |
| Pacose               | 62 | Exact                 | 7  |

MaxSAT approaches in MSE 2021:


| Solver        | Hitting Set  | Unsat-based  | Sat-Unsat    |
|---------------|--------------|--------------|--------------|
| MaxHS         | $\checkmark$ |              |              |
| Exact         |              | ✓(PB-based)  |              |
| CASHWMaxSAT   |              | $\checkmark$ |              |
| Pacose (2020) |              |              | $\checkmark$ |
| UWrMaxSAT     |              | $\checkmark$ | $\checkmark$ |


| Solver | #Solved | Time (Avg) |
|--------|---------|------------|
|        |         |            |
|        |         |            |
|        |         |            |

| Solver    | #Solved | Time (Avg) |
|-----------|---------|------------|
|           |         |            |
|           |         |            |
| UWrMaxSAT | 455     | 159.06     |

| Solver    | #Solved | Time (Avg) |
|-----------|---------|------------|
|           |         |            |
| MaxHS     | 464     | 198.96     |
| UWrMaxSAT | 455     | 159.06     |

| Solver      | #Solved | Time (Avg) |
|-------------|---------|------------|
| CASHWMaxSAT | 471     | 217.62     |
| MaxHS       | 464     | 198.96     |
| UWrMaxSAT   | 455     | 159.06     |





### Complete track: Weighted

- ▶ Similar performance with respect to best solvers of recent years:
  - ▶ 2021: CASHWMaxSAT solved 471 instances, 217.62 seconds (average)
  - ▶ 2020: UWrMaxSAT solved 441 instances, 117.91 seconds (average)
  - 2018: RC2 solved 428 instances, 203.82 seconds (average)
- ► VBS solves 502 instances:
  - VBS is getting closer to the best solver
  - Only more 31 instances!
- Closer look at the VBS:

| Pacose      | 199 |
|-------------|-----|
| UWrMaxSAT   | 122 |
| MaxHS       | 115 |
| CASHWMaxSAT | 60  |
| Exact       | 6   |

### Ranking for incomplete tracks

Incomplete ranking:

Incomplete score: computed by the sum of the ratios between the best solution found by a given solver and the best known solution:

 $\blacktriangleright \sum_{i} \frac{(\text{cost of best known solution} + 1)}{(\text{cost of solution for i found by solver} + 1)}$ 

- ▶ For an instance *i* score is 0 if no solution was found by that solver
- ▶ For each instance the incomplete score is a value in [0,1]

# Incomplete Track

### Incomplete track: Unweighted

MaxSAT approaches in MSE 2021:

| Solver                | Stochastic   | Unsat-based  | Sat-Unsat    | Other        |
|-----------------------|--------------|--------------|--------------|--------------|
| Loandra (2020)        |              | $\checkmark$ | 1            | $\checkmark$ |
| StableResolver (2020) | $\checkmark$ |              |              | $\checkmark$ |
| Exact                 |              | $\checkmark$ |              | $\checkmark$ |
| TT-Open-WBO-Inc       | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |
| SATLike               | $\checkmark$ |              | $\checkmark$ |              |

### Incomplete track: Unweighted

New and/or improved solvers:

- ► Exact (new)
  - Same as complete track
- ► TT-Open-WBO-Inc by Alexander Nadel.
  - Uses the SATLike solver as inprocessing.
  - ▶ Includes further modifications to the Polosat algorithm.
  - ▶ More details can be found in the solver description.
- SATLike-c by Zhendong Lei and Shaowei Cai, University of Chinese Academy of Sciences:
  - Switches between a stochastic algorithm and TT-Open-WBO-Inc.
  - ▶ More details can be found in the solver description.

### Incomplete track: Unweighted (60 seconds)

Results ...

### Incomplete track: Unweighted (60 seconds)

| Solver               | Score (avg) |
|----------------------|-------------|
|                      |             |
|                      |             |
|                      |             |
| Loandra (2020)       | 0.705       |
| StableResolve (2020) | 0.685       |
| Exact                | 0.422       |

# Incomplete track: Unweighted (60 seconds)

155 instances

| Solver               | Score (avg) |
|----------------------|-------------|
| SATLike-c            | 0.830       |
| TT-Open-WBO-Inc      | 0.823       |
| SATLike-ck           | 0.816       |
| Loandra (2020)       | 0.705       |
| StableResolve (2020) | 0.685       |
| Exact                | 0.422       |

 SATLike-c: Hybrid approach between stochastic algorithms and TT-Open-WBO-Inc was the best approach

### Incomplete track: Unweighted (300 seconds)

Results ...

### Incomplete track: Unweighted (300 seconds)

| Solver               | Score (avg) |
|----------------------|-------------|
|                      |             |
|                      |             |
|                      |             |
| Loandra (2020)       | 0.834       |
| StableResolve (2020) | 0.703       |
| Exact                | 0.470       |

### Incomplete track: Unweighted (300 seconds)

#### 155 instances

| Solver               | Score (avg) |
|----------------------|-------------|
| SATLike-c            | 0.881       |
| SATLike-ck           | 0.866       |
| TT-Open-WBO-Inc      | 0.862       |
| Loandra (2020)       | 0.834       |
| StableResolve (2020) | 0.703       |
| Exact                | 0.470       |

► Similar results to 60 seconds

### Incomplete track: Weighted

MaxSAT approaches in MSE 2021:

| Solver                 | Stochastic   | Unsat-based  | Sat-Unsat    | Other        |
|------------------------|--------------|--------------|--------------|--------------|
| Open-WBO-Inc-complete* |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Open-WBO-Inc-satlike*  | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| Loandra*               |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| StableResolver*        | $\checkmark$ |              |              | $\checkmark$ |
| TT-Open-WBO-Inc        | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |
| SATLike                | $\checkmark$ |              | $\checkmark$ |              |
| Exact                  |              | $\checkmark$ |              | $\checkmark$ |

\* denotes solvers from 2020

### Incomplete track: Weighted (60 seconds)

Results ...

# Incomplete track: Weighted (60 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
|                              |             |
|                              |             |
|                              |             |
| Loandra (2020)               | 0.728       |
| Open-WBO-Inc-complete (2020) | 0.722       |
| Open-WBO-Inc-satlike (2020)  | 0.684       |
| StableResolve (2020)         | 0.428       |
| Exact                        | 0.377       |

# Incomplete track: Weighted (60 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| SATLike-ck                   | 0.793       |
| TT-Open-WBO-Inc              | 0.785       |
| SATLike-c                    | 0.784       |
| Loandra (2020)               | 0.728       |
| Open-WBO-Inc-complete (2020) | 0.722       |
| Open-WBO-Inc-satlike (2020)  | 0.684       |
| StableResolve (2020)         | 0.428       |
| Exact                        | 0.377       |

- 3 best solvers use hybrid approaches between stochastic algorithms and SAT-based approaches
- Memory is becoming an issue for some solvers due to the size of instances (even more this year)

### Incomplete track: Weighted (300 seconds)

Results ...

# Incomplete track: Weighted (300 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
|                              |             |
|                              |             |
|                              |             |
| SATLike-ck                   | 0.776       |
| Open-WBO-Inc-complete (2020) | 0.724       |
| Open-WBO-Inc-satlike (2020)  | 0.720       |
| StableResolve (2020)         | 0.583       |
| Exact                        | 0.503       |

# Incomplete track: Weighted (300 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| Loandra (2020)               | 0.831       |
| TT-Open-WBO-Inc              | 0.796       |
| SATLike-c                    | 0.779       |
| SATLike-ck                   | 0.776       |
| Open-WBO-Inc-complete (2020) | 0.724       |
| Open-WBO-Inc-satlike (2020)  | 0.720       |
| StableResolve (2020)         | 0.583       |
| Exact                        | 0.503       |

- Hybrid approaches perform better for larger timeouts
- The preprocessing employed by Loandra seems to work better with larger timeout.
- More results available at the MSE website

### Webpage

#### MaxSAT Evaluation 2021 webpage

https://maxsat-evaluations.github.io/2021/

- Tables with average times and number of solved instances
- Complete ranking tables
- Cactus plots
- Detailed results for each instance
- Description of the solvers
- Source code of the solvers
- Description of the benchmarks
- Benchmarks and log files are available for download

### Looking ahead

#### Format

- Changes to the format:
  - ► No more p-line
  - No more top
- Should the format be extended?
  - Support for floating point weights
  - Support for negative weights
  - Support for cardinality constraints
  - ▶ ...

### Looking ahead

#### New tracks

- ► Consider other tracks?
  - Incremental
  - Enumeration of MCSes
  - ► Top-k?
  - ▶ ...

### Looking ahead

#### MaxSAT Lib

http://www.cs.toronto.edu/maxsat-lib/

- Collection of MaxSat instances
- Make available the best known solution to each instance
- Community can contribute to update the best known solution
- ► Additional resources for MaxSAT research can be made available here

### Thanks

Thanks to everyone that contributed solvers and benchmarks! Without you this evaluation would not be possible!

Thanks to StarExec for allowing us to use their cluster:

https://www.starexec.org/

