
SATLike-c: Solver Description

Zhendong Lei1,2,Shaowei Cai1,2,Fei Geng3,Dongxu Wang3,Yongrong Peng3,Dongdong Wan3,Yiping Deng3 and Pinyan Lu3,4

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

3TCS Lab, Huawei Technologies, Shanghai, China
4Shanghai University of Finance and Economics, Shanghai, China

{leizd, caisw}@ios.ac.cn {gengfei12, dongxu.wang, pengyongrong, wandongdong1, yiping.deng, lupinyan}@huawei.com

Abstract—This document describes the solver SATLike-c, sub-
mitted to the four incomplete tracks of MaxSAT Evaluation 2021.

I. INTRODUCTION

SATLike-c participates in incomplete track. SATLike-c has
two main engines, one is local search solver SATLike [1] and
the other is SAT-based solver TT-Open-WBO-inc [2].

A. Local Search Algorithm: SATLike

SATLike adopts a dynamic local search framework for
SAT and exploits the distinction of hard and soft clauses by
a carefully designed clauses weighting scheme. The clauses
weighting scheme works on both hard and soft clauses while
it puts more increments to hard clauses each time and also sets
a limit on the maximum weight that each soft clause can get.
As for the variable selection heuristic, it works like a normal
local search for SAT which pick a variables with the highest
score in each step. The algorithm is thus called SATLike.

The weighting scheme used in SATLike is named
Weighting-PMS, and works as follows. For each hard clause,
we associate an integer number as its weight which is initial-
ized to 1; for each soft clause, we use the original weight
(which is 1 for PMS, and is the original weight from the
input file for WPMS) as its initial weight. Whenever a “stuck”
situation is observed, that is, we cannot decrease the cost
by flipping any variable, then clause weights are updated as
follows.

• with probability 1 − sp: for each falsified hard clause
c, w(c) := w(c) + h inc; for each falsified soft clause
c, w(c) := w(c) + 1 if w(c) < ζ, where ζ limits the
maximum value that a soft clause weight can get.

• with probability sp (smoothing probability): for each
satisfied hard clause c s.t. w(c) > 1, w(c) := w(c) −
h inc; for each satisfied soft clause c s.t. w(c) > 1,
w(c) := w(c)− 1.

SATLike uses scoring function (the score of variables) to
guide the search. In SATLike, the score of variable x, denoted
by score(x), is the increase of total weight of satisfied clauses
(either hard clauses or soft clauses) caused by flipping x.

The main component of SATLike is a loop (lines 3-15),
which is executed to iteratively modify the current solution α
until a given time limit is reached. During the search, whenever

Algorithm 1: SATLike
Input: PMS instance F , cutoff
Output: A feasible assignment α of F and its cost, or “no

feasible assignment found”
1 begin
2 α := an initial complete assignment; α∗ := ∅;
3 while elapsed time < cutoff do
4 if @ falsified hard clauses & cost(α) < cost∗ then

α∗ := α; cost∗ := cost(α) ;
5 if D := {x|score(x) > 0} 6= ∅ then
6 v := a variable in D picked by BMS strategy;
7 else
8 update weights of clauses by Weighting-PMS;
9 if ∃ falsified hard cluases then

10 c := a random falsified hard clause

11 else c := a random falsified soft clause;
12 v :=the variable with highest score in c;

13 α := α with v flipped;

14 if α∗ is feasible then return (cost∗, α∗);
15 else return “no feasible assignment found”;

a better feasible solution is found, the best feasible solution is
updated accordingly (line 4).

In each step, if there exits variables with score bigger than
0, SATLike picks a variable with the greatest score and flips
it. If there is no such variable, then SATLike updates clause
weights according to the Weighting-PMS, and picks a variable
from a falsified clause.

B. Hybrid Solver: SATLike-c

We combine SATLike with the state of the art SAT-based
solvers TT-Open-WBO-inc [2], which leading to the hybrid
solver SATLike-c.

The structure of SATLike-c is shown as algorithm 2. First,
a SAT solver is executed to find a feasible solution (only
works on hard clauses). Then SATLike is executed with this
feasible solution as its initial solution. SATLike is executed
until there is no improvement over k steps (k is set to 107

in our experiment). In most cases of our solver, SATLike can
return a high-quality solution in this period, which is even
close to the optimal one. But as the execution time increases, it
is difficult for SATLike to get a further improved solution. So,
the obtained high-quality solution is passed to the SAT-based



Algorithm 2: SATLike-c
Input: PMS instance F , cutoff
Output: A feasible assignment α of F and its cost, or “no

feasible assignment found”
1 begin
2 F’= Hard(F);
3 α := SATSOLVER(F’);
4 α := SATLIKE(α, F );
5 α := TTOPENWBOINC(α, F );
6 if α∗ is feasible then return (cost∗, α∗);
7 else return “no feasible assignment found”;

solver as the initial model, and thus an initial upper bound is
also provided. After that, TT-Open-WBO-inc is executed in
the rest time.

REFERENCES

[1] Shaowei Cai, Zhendong Lei, “Old techniques in new ways: Clause
weighting, unit propagation and hybridization for maximum satisfiabil-
ity”. Artif. Intell. 287: 103354 (2020)

[2] Alexander Nadel.“Anytime weighted maxsat withimproved polarity se-
lection and bit-vector optimization” InClark W. Barrett and Jin Yang,
editors,2019 Formal Methodsin Computer Aided Design, FMCAD 2019,
San Jose, CA, USA,October 22-25, 2019, pages 193–202. IEEE, 2019


