
TT-Open-WBO-Inc-21:
an Anytime MaxSAT Solver Entering MSE’21

Alexander Nadel
Email: alexander.nadel@cs.tau.ac.il

Abstract—This document describes the solver
TT-Open-WBO-Inc-21, submitted to the four incomplete
tracks of MaxSAT Evaluation 2021. TT-Open-WBO-Inc-21
is the 2021 version of our solver TT-Open-WBO-Inc [9],
[10] (itself based on Open-WBO-Inc [3]), which came in
first in both the incomplete weighted tracks and second in
both the incomplete unweighted tracks at MaxSAT Evaluation
2020 (MSE20). TT-Open-WBO-Inc-21 includes the following
two major new features as compared to the previous version
TT-Open-WBO-Inc-20: 1) integration of SATLike [2] for
inprocessing, and 2) further modifications (as compared to
TT-Open-WBO-Inc-20 [10]) to the Polosat algorithm [8].

I. INTRODUCTION

Applying the SATLike local search algorithm [2] as a
preprocessor, followed by invoking a SAT-based anytime
MaxSAT algorithm proved to be a successful strategy for
anytime MaxSAT solving, used by both the winner of MSE20
in the two incomplete unweighted tracks SATLike-c-20 [4]
and the runner-up in the two incomplete weighted tracks
SATLike-cw-20 [5].

Following these results, we have integrated SATLike into
TT-Open-WBO-Inc. Moreover, while the weighted com-
ponent of our solver uses SATLike as a preprocessor, the
unweighted component uses it as an inprocessor, that is,
SATLike is invoked more than once during the solver’s
lifetime. See Sect. II below for more details.
Polosat algorithm [8] can be understood as a SAT-

based local search. Using it instead of plain SAT solving
significantly improves the performance of anytime MaxSAT
solving [8]. TT-Open-WBO-Inc-20 had used Polosat
or, more precisely, a modified version of the algorithm, for
both weighted and unweighted solving. In our new version
TT-Open-WBO-Inc-21, we changed Polosat further,
where the modifications differ between the weighted and the
unweighted components. Sect. III contains further details.

II. INTEGRATING SATLike

We found in preliminary experiments that it pays off to
integrate SATLike in a different manner into the weighted
and unweighted components of the solver, respectively.

A. SATLike in the Weighted Component

The weighted component of the solver uses SATLike as
part of its flow as follows (similarly to the way it is used by
SATLike-c-20 and SATLike-cw-20):

1) Run a SAT solver to find an initial model µ.

2) Invoke SATLike for 15 seconds to improve µ, if possi-
ble.

3) Switch to an anytime SAT-based algorithm, where µ is
used as the initial model. For the anytime SAT-based
algorithm, we apply the BMO-based clustering [3] with
TORC polarity selection [6], in which SAT invocations
are replaced by invocations of our enhanced version of
Polosat, discussed in Sect. III-A.

B. SATLike in the Unweighted Component

The unweighted component applies SATLike for inpro-
cessing as part of the following flow:

1) Run a SAT solver to find an initial model µ.
2) Invoke SATLike for 15 seconds to improve µ, if possi-

ble.
3) Switch to an anytime SAT-based algorithm, where µ is

used as the initial model. We apply the Mrs. Beaver al-
gorithm [7], enhanced by TORC polarity selection [6] and
two further heuristics from [6]: global stopping condition
for OBV-BS and size-based switching to complete part.
The SAT invocations are replaced by invocations of our
enhanced version of Polosat, discussed in Sect. III-B.

4) Stop the anytime SAT-based algorithm after 60 sec. Let
the best model so far be µ.

5) Re-invoke SATLike for 15 seconds to improve µ, if
possible. Go to step 3.

III. Polosat MODIFICATIONS

We assume that a MaxSAT instance comprises a set of
hard satisfiable clauses H and a target bit-vector (target)
T = {tn, tn−1, . . . , t1}, where each target bit ti is a Boolean
variable associated with a strictly positive integer weight
wi. The weight of a variable assignment µ is O(T, µ) =∑n

i=1 µ(ti)×wi, that is, the overall weight of T ’s bits, satisfied
by µ. Given a MaxSAT instance, a MaxSAT solver is expected
to return a model having the minimum possible weight.
Polosat [8] can be understood as a SAT-based local

search algorithm. First, it invokes a SAT solver to get the
first model and stashes that model in µ. Then it enters a loop,
where each iteration is called an epoch. Each epoch tries to
improve the best model so far µ. The algorithm finishes and
returns µ, when a certain epoch cannot improve µ anymore. In
addition, we apply an adaptive strategy that stops Polosat
forever and falls back to SAT whenever the model generation
rate of Polosat is too slow (1 and 2 models per second for
the weighted and unweighted components, respectively).



Each epoch goes over the so-called bad target bits B, where
a target bit is considered bad if it has not been assigned 0
in any model from the beginning of the current epoch. The
original algorithm in [8] tries to flip each bad target bit ti by
sending the SAT solver the so-called flip-query with ¬ti as
an assumption. Note that if the flip-query finds any model, it
must be different from every other model encountered during
the current epoch, since the current bad target bit is enforced
to 0. If a model better than µ is found, µ is updated. The set of
the bad target bits B is updated, whenever any new model is
found. In addition, to simulate local search further, Polosat
applies the TORC polarity selection heuristic [6]; see [8] for
details.

We modified Polosat already in
TT-Open-WBO-Inc-20 as follows. Let ti be the
current bad target bit, encountered by Polosat.
TT-Open-WBO-Inc-20 uses an additional SAT query,
called the prefix-query, prior to the flip-query. For the prefix-
query, the SAT solver is provided with the assumption ¬ti
(as in the original Polosat) along with a set of assumptions
assigning the target bit variables tj : 1 ≤ j < i their polarity
in µ. The prefix-query looks for a new model in a more
restricted context, induced by the value in µ of the current
target prefix. It is expected to come back faster than the
flip-query, because of the additional assumptions. If the
prefix-query succeeds to improve the best model, the solver
skips the flip-query for the current bad target bit. Otherwise,
the flip-query is applied as usual.

In our new version of the solver, we modified the queries
to the SAT solver further, where the modifications differ for
the weighted and unweighted components, respectively.

A. Polosat in the Weighted Component

The modification is similar to the one we have described
above, that is, we apply the prefix-query, followed by the flip-
query, except for the following single difference. The flip-
query is now skipped whenever the prefix-query finds any
model (rather than whenever it succeeds to improve the best
model so far). The updated algorithm is shown in Fig. 1.

B. Polosat in the Unweighted Component

Let the full-query be a SAT invocation, where the solver
is provided with the assumption ¬ti (as in the original
Polosat) along with a set of assumptions assigning all the
target bit variables, but ti (that is, tj : 1 ≤ j 6= i ≤ n) their
polarity in µ. Note that the search space during the full-query
is even more restricted than during the prefix-query.

Our unweighted component sends the solver the flip-query,
followed by the full-query, where the full-query is skipped,
whenever the flip-query succeeds to improve the best model
so far. The algorithm is shown in Fig. 2.

REFERENCES

[1] F. Bacchus, J. Berg, , M. Järvisalo, and R. Martins, editors. MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions, Department of
Computer Science Report Series B 2020-2, Finland, 2020. Department
of Computer Science, University of Helsinki.

Algorithm 1 polosat-weighted

1: µ := SAT() . µ: the best model so far
2: g := 1 . g is 1 iff the current epoch is good
3: while g do . One loop is an epoch
4: B := {t : t ∈ T, µ(t) = 1}
5: g := 0
6: while B is not empty do
7: ti := B.front(); B.dequeue()
8: P := {tj ∈ T : j < i}
9: σ := SAT({¬ti} ∪ {t : t ∈ P ∧ µ(t) = 1} ∪
{¬t : t ∈ P ∧ µ(t) = 0})

10: if SAT then . Satisfiable
11: if Ψ(σ) < Ψ(µ) then µ := σ and g := 1
12: B := {t : t ∈ B, σ(t) = 1}
13: else
14: σ := SAT({¬ti})
15: if SAT then . Satisfiable
16: if Ψ(σ) < Ψ(µ) then µ := σ and g := 1
17: B := {t : t ∈ B, σ(t) = 1}
18: return µ

Algorithm 2 polosat-unweighted

1: µ := SAT() . µ: the best model so far
2: g := 1 . g is 1 iff the current epoch is good
3: while g do . One loop is an epoch
4: B := {t : t ∈ T, µ(t) = 1}
5: g := 0
6: while B is not empty do
7: ti := B.front(); B.dequeue()
8: σ := SAT({¬ti})
9: if SAT then . Satisfiable

10: if Ψ(σ) < Ψ(µ) then µ := σ and g := 1
11: B := {t : t ∈ B, σ(t) = 1}
12: if not SAT or Ψ(σ) ≥ Ψ(µ)) then
13: P := {tj ∈ T : j 6= i}
14: σ := SAT({¬ti} ∪ {t : t ∈ P ∧ µ(t) = 1} ∪
{¬t : t ∈ P ∧ µ(t) = 0})

15: if SAT then . Satisfiable
16: if Ψ(σ) < Ψ(µ) then µ := σ and g := 1
17: B := {t : t ∈ B, σ(t) = 1}
18: return µ

[2] S. Cai and Z. Lei. Old techniques in new ways: Clause weighting, unit
propagation and hybridization for maximum satisfiability. Artif. Intell.,
287:103354, 2020.

[3] S. Joshi, P. Kumar, S. Rao, and R. Martins. Open-wbo-inc: Approx-
imation strategies for incomplete weighted maxsat. J. Satisf. Boolean
Model. Comput., 11(1):73–97, 2019.

[4] Z. Lei and S. Cai. Satlike-c: Solver description. In Bacchus et al. [1].
[5] Z. Lei and S. Cai. Satlike-c(w): Solver description. In Bacchus et al.

[1].
[6] A. Nadel. Anytime weighted MaxSAT with improved polarity selection

and bit-vector optimization. In FMCAD 2019, pages 193–202.
[7] A. Nadel. Solving MaxSAT with bit-vector optimization. In SAT 2018,

pages 54–72, 2018.
[8] A. Nadel. On optimizing a generic function in SAT. In 2020 Formal

Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020, pages 205–213. IEEE, 2020.

[9] A. Nadel. Polarity and variable selection heuristics for SAT-based
anytime MaxSAT. J. Satisf. Boolean Model. Comput., 12(1):17–22,
2020.

[10] A. Nadel. TT-Open-WBO-Inc-20: an Anytime MaxSAT Solver Entering
MSE’20. In Bacchus et al. [1].


	Introduction
	Integrating SATLike
	SATLike in the Weighted Component
	SATLike in the Unweighted Component

	Polosat Modifications
	Polosat in the Weighted Component
	Polosat in the Unweighted Component

	References

