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Fig. 1: The structure of Loandra.

I. PRELIMINARIES

We briefly overview the Loandra MaxSAT-solver as it
participated in the incomplete track of the 2020 MaxSAT
Evaluation, focusing especially on the differences between the
2019 and 2020 versions, more detailed descriptions can be
found in [4], [10]. Loandra owes much of its existence to
Open-WBO [11], we thank the developers of Open-WBO for
their work .

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses a
MaxSAT instance F consists of two CNF formulas, the hard
clauses Fh and the soft clauses Fs, as well a weight wc
associated with each C ∈ Fs. A solution to F is an assignment
τ that satisfies Fh. The cost of a solution τ is the sum
of weights of the soft clauses falsified by τ . An optimal
solution is one with minimum cost over all solutions. An
unsatisfiable core κ of F is a subset of soft clauses s.t. Fh∧κ
is unsatisfiable.

II. STRUCTURE OF LOANDRA

Figure 1 overviews the structure of Loandra. In short, Loan-
dra implements core-boosted linear search [4] augmented with
tightly integrated MaxSAT preprocessing [3], [9], [10], [2].
More specifically, Loandra consists of three main components:
a) Preprocessing, b) Core-guided search, c) Linear search.

a) Preprocessing: On input F , the execution starts by
invoking the MaxPre [9] preprocessor on F using the standard
techniques of MaxPre except for blocked clause elimination
(BCE). The reason we are not using BCE is that, as detailed
in [10], intermediate solutions to instances preprocessed with
BCE are more prone to having their costs miss-interpreted
by the core-guided and linear search components of Loandra.
If MaxPre can not compute the optimal solution to F , the
preprocessed instance P(F) is handed to the core guided
phase (CORE-GUIDED in Figure 1), reusing the assumption
variables introduced during preprocessing [3].

b) Core-guided search: The core-guided phase is un-
changed from the 2019 version; as the instantiation of the core-
guided algorithm, we use a reimplementation of PMRES [12]
extended with weight aware core extraction (WCE) [5] and
clause hardening. If CORE-GUIDED is able to find an optimal
solution τ to P(F), an optimal solution REC(τ) to F is
reconstructed and returned. Otherwise i.e. if the core-guided
phase runs out of time, the final working instance P(F)w and
τ∗, the best found solution to it is handed to the linear search
component LIN-SEARCH.

c) Linear search: LIN-SEARCH, the linear search phase
of Loandra is an implementation of the SAT/UNSAT linear
search algorithm [6], extended with solution guided phase
saving and varying resolution in the style of LinSBPS [7]. The
component is for the most part the same as in the 2019 version.
The main difference is, that in the start of each resolution, the
currently best known solution τ∗ is minimized in order to
alleviate the missinterpretation of costs that might happen due
to preprocessing in the context of incomplete solving [10].

More specifically, let P(F)w = P(F) ∪ CARD be the
working instance of LIN-SEARCH where P(F) is the pre-
processed instance computed by MaxPre and CARD are the
constraints added in the core-guided phase. At the start of
each resolution, LIN-SEARCH computes a set Bs of blocking
variables and an upper bound UB over which the PB constraint
is built. The upper bound is computed based on τ∗, the current
best known solution to P(F)w. However, as shown in [10],
there can be a significant difference between COST(P(F), τ∗),
the cost of τ∗ w.r.t to P(F), and COST(F ,REC(τ∗)), the
cost of the solution to F reconstructed from τ∗. This dif-
ference might result UB, and as consequence the whole
PB constraint, being much larger than actually required. In
order to alleviate this issue LIN-SEARCH uses a simple,
procedure that iteratively fixes all variables in Bs in the
following manner. In each iteration, all variables in P(F)



are fixed to the polarities that they are assigned to by τ∗.
Additionally an unfixed variable b ∈ Bs is fixed to false (i.e.
to not incur cost). Then the SAT solver is used to extend
these fixings into a satisfying assignment of P(F)w. If such
an assignment τ∗b can be found, that assignment will have
COST(P(F), τ∗b ) < COST(P(F), τ∗) while also agreeing with
τ∗ on all variables in P(F). The variable b is then fixed
to false in subsequent iterations. Otherwise, the variable b
is fixed to true in subsequent iterations. Notice that, due
to the nature of constraints added by CORE-GUIDED, each
individual SAT-solver call is solvable by unit propagation
alone (the constraints in CARD are basically cardinality
constraints). Even so, preliminary experiments showed that
the minimization procedure is too expensive to run for each
new solution found, which is why we restrict it to once per
resolution.

The linear phase runs until either finding an optimal solu-
tion, or running out of time, at which point a reconstruction
REC(τ∗) of the currently best known solution τ∗ to P(F)w is
returned. Notice that the reconstruction of a solution happens
only once, we use the standard, linear time, reconstruction
algorithm as implemented by MaxPre.

III. IMPLEMENTATION DETAILS

All algorithms are implemented on top of the publicly
available Open-WBO system [11] using Glucose 4.1 [1] as
the back-end SAT solver. In order to minimize I/O overhead,
we make direct use of the preprocessor interface offered by
MaxPre. The linear search algorithm uses the generalized
totalizer encoding [8] to convert the PB constraints needed
in linear search to CNF. In the evaluation, we set a 30s time
limit for the preprocessing phase and a 30 second time limit
for the core-guided phase. These limits were chosen based
on preliminary experiments. On weighted instances, the core-
guided phase is also terminated when the stratification bound
would be lowered to 1. On unweighted instances the phase
is terminated at the latest after extracting one set of disjoint
cores.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. Before building loandra, the maxpre library needs
to be built by invoking MAKE LIB in the maxpre subfolder.
Afterwards, a statically linked version of Loandra in release
mode can be built by running MAKE RS in the base folder.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments: the flag -pmreslin-cglim sets the
maximum time that the core-guided phase can run for (in
seconds). The rest of the flags resemble the flags accepted
by Open-WBO; invoke ./loandra static –help-verb for more
information.
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