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Abstract—Weighted MaxSAT solving is a special case of
pseudo-Boolean optimization, also known as binary linear pro-
gramming. This submission aims to investigate whether Exact, a
conflict-driven cutting planes learning pseudo-Boolean solver, is
competitive on MaxSAT problems.

Index Terms—binary linear programming, pseudo-Boolean
solving, cutting planes, core-guided optimization

I. INTRODUCTION

It is well-know that a weighted MaxSAT formula can be
written as a binary linear program (BLP):
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where C is a set of clauses, ¢™ and ¢~ are the set of positive
and negative literals in a clause ¢ € C' respectively, w, is the
cost of not satisfying c, and all variables z, y and z are binary.

Even though this BLP formulation is natural, the state-
of-the-art in previous MaxSAT evaluations employs repeated
calls to Boolean satisfiability (SAT) solvers instead of one
straightforward call to an integer linear programming (ILP)
solver. Most likely, the reason for this is that ILP solvers rely
heavily on exploiting the linear relaxation of a BLP, while
all constraints in the above BLP are clauses, which have a
particularly weak linear relaxation.

A third technology that could natively handle the above
BLP however is pseudo-Boolean (PB) solving. Similar to ILP
technology, PB technology natively takes linear constraints
over binary variables as input. However, in contrast to ILP
solvers, a PB solver does not chiefly depend on reasoning
on the linear relaxation of a BLP. Instead, so-called conflict-
driven cutting-planes learning (CDCPL) PB solvers derive
(learn) from each conflict in the search tree an implied linear
constraint that, if it had been derived previously, would have
prevented the conflict through unit propagation. In this way,
CDCPL PB solvers are a generalization of conflict-driven
clause learning (CDCL) SAT solvers, where a CDCPL solver
can learn stronger constraints than clauses.

ISee, e.g., https://en.wikipedia.org/wiki/Maximum_satisfiability_problem#
(1-1/e)-approximation

II. SUBMISSION

We submit the CDCPL solver Exac]to the MaxSAT evalu-
ation. Exact is a fork of the CDCPL solver RoundingSaﬂ [11].
For this submission, we do not employ RoundingSat’s linear
programming integration [2], as we expect the linear relax-
ations of the instances to be too weak. We do make use of its
optimized propagation routines [3|] and its hybrid core-guided
optimization technique [4]].

Exact improves upon its predecessor through a myriad of
refactorings, extensions and improvements. We highlight three
important ones for this MaxSAT evaluation submission.

A first one is the stratification routine of Exact’s core-guided
optimization. Instead of core-guided stratification based on [5],
Exact uses a simple routine that ignores all soft clauses with
a cost lower than some 7, which initially is set to the highest
clause cost (the highest weight in the objective of the BLP
representation). If Exact does not find a core with this 7 (i.e.,
it finds a solution where all hard and non-ignored soft clauses
are satisfied, or timeouts in the core-guided search) 7 is halved,
to consider more soft clauses. This process is repeated until the
maximum cost is halved to 1, at which point all soft clauses
are taken into account.

A second improvement is the exploitation of the observation
that a single PB core may yield multiple cardinality cores,
which can be used during the core-guided lower bound deriva-
tion and objective reformulation process [4]. For instance,
given an objective function 4z + 3y + 2z +w to be minimized,
and a PB core 2z + 2y + 2 + w > 4, Exact constructs an
initial implied cardinality core = + y + z > 2, reformulating
the objective to 2z + y + w + 2a + 4 through the extension
constraint t +y+z=2+a. Butas 2z + 2y + 2 +w > 4
also implies * + y + w > 2, Exact can further reformulate
the objective to x + 2a + b + 6 with the extension constraint
x +y+w = 2+ b, increasing the objective lower bound from
4 to 6 without any new core-guided solver call.

A third improvement is meant to address the fact that,
given a search conflict implied by only clausal constraints,
CDCPL solvers can only learn a clause, which is identical
to regular CDCL SAT solving (which has a more efficient
implementation). For CDCPL to work well, non-clausal con-
straints need to appear in the conflict implication graph, so that
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strong non-clausal constraints can be learned [6]. On MaxSAT
instances, Exact introduces non-clausal constraints in three
ways. Firstly, a derived upper or lower bound on the objective
function is typically a non-clausal constraint. Secondly, a
core-guided extension constraint also typically is equivalent
to a conjunction of non-clausal constraints. Thirdly, implied
cardinality constraints can be detected from a conjunction
of clauses. Work on cardinality detection in RoundingSat
exists [7], where an investigation of the implication graph
during conflict analysis yields the right information to con-
struct cardinality constraints. Exact uses a different approach,
where repeated probing (deciding a single variable and running
unit propagation) yields the necessary edges in the implication
graph to derive at-most-one cardinality constraints.

III. CONCLUSION

By combining the effectiveness of CDCLP and core-guided
optimization, PB solving technology may have become com-
petitive to SAT-based approaches on MaxSAT problems. Ex-
act’s submission to 2021’s MaxSAT evaluation will provide
experimental data to support or reject this hypothesis.
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