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This site covers the usage and API documentation of the PySAT toolkit. For the basic information on what PySAT is,
please, see the main project website.
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CHAPTER
ONE

API DOCUMENTATION

The PySAT toolkit has four core modules: card, formula, pb and solvers. The three of them (card, pb and
solvers) are Python wrappers for the code originally implemented in the C/C++ languages while the formula
module is a pure Python module. Version 0.1.4.dev0 of PySAT brings a new module called pb, which is a wrapper for
the basic functionality of a third-party library PyPBLib developed by the Logic Optimization Group of the University
of Lleida.

1.1 Core PySAT modules

1.1.1 Cardinality encodings (pysat .card)

List of classes

EncType This class represents a C-like enum type for choosing
the cardinality encoding to use.

CardEnc This abstract class is responsible for the creation of car-
dinality constraints encoded to a CNF formula.

ITotalizer This class implements the iterative totalizer encoding'".

Module description

This module provides access to various cardinality constraint' encodings to formulas in conjunctive normal form
(CNF). These include pairwise’, bitwise?, ladder/regular’*, sequential counters’, sorting® and cardinality networks’,
totalizer®, modulo totalizer’, and modulo totalizer for k-cardinalitylo, as well as a native cardinality constraint repre-
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sentation supported by the MiniCard solver.

A cardinality constraint is a constraint of the form: )" ; z; < k. Cardinality constraints are ubiquitous in practical

problem formulations. Note that the implementation of the pairwise, bitwise, and ladder encodings can only deal with
AtMostl constraints, e.g. Z?zl z; < 1.

Access to all cardinality encodings can be made through the main class of this module, which is CardEnc.

Additionally, to the standard cardinality encodings that are basically “static” CNF formulas, the module is designed
to able to construct incremental cardinality encodings, i.e. those that can be incrementally extended at a later stage.
At this point only the iterative totalizer'' encoding is supported. Iterative totalizer can be accessed with the use of the
ITotalizer class.

Module details

class pysat.card.CardEnc
This abstract class is responsible for the creation of cardinality constraints encoded to a CNF formula. The
class has three class methods for creating AtMostK, AtLeastK, and EqualsK constraints. Given a list of literals,
an integer bound and an encoding type, each of these methods returns an object of class pysat. formula.
CNFP1us representing the resulting CNF formula.

Since the class is abstract, there is no need to create an object of it. Instead, the methods should be called directly
as class methods, e.g. CardEnc.atmost (1its, bound) or CardEnc.equals (lits, bound). An
example usage is the following:

>>> from pysat.card import =

>>> cnf = CardEnc.atmost (lits=[1, 2, 3], encoding=EncType.pairwise)
>>> print (cnf.clauses)

(=1, =21, (-1, =31, [-2, =37]

>>> cnf = CardEnc.equals(lits=[1, 2, 3], encoding=EncType.pairwise)
>>> print (cnf.clauses)

(1, 2, 31, (-1, =23, [-1, =31, [-2, =3]]

classmethod atleast (lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an AtLeastK constraint, i.e. of > ; z; > k. The
method takes 1 mandatory argument 1its and 3 default arguments can be specified: bound, top_id,
vpool, and encoding.

Parameters
e lits (iterable (int))—a list of literals in the sum.
¢ bound (int) — the value of bound k.
* top_id (integer or None)- top variable identifier used so far.
* vpool (IDPool) — variable pool for counting the number of variables.
* encoding (integer) — identifier of the encoding to use.

Parameter t op_id serves to increase integer identifiers of auxiliary variables introduced during the encod-
ing process. This is helpful when augmenting an existing CNF formula with the new cardinality encoding
to make sure there is no collision between identifiers of the variables. If specified, the identifiers of the
first auxiliary variable will be top_id+1.

Instead of top_id, one may want to use a pool of variable identifiers vpool, which is automatically
updated during the method call. In many circumstances, this is more convenient than using top_id. Also
note that parameters top_id and vpool cannot be specified simultaneusly.

The default value of encodingis Enctype.seqgcounter.

4 Chapter 1. API documentation
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The method translates the AtLeast constraint into an AtMost constraint by negating the literals of 1its,
creating a new bound n — k and invoking CardEnc.atmost () with the modified list of literals and the
new bound.

Raises CardEnc.NoSuchEncodingError — if encoding does not exist.

Return type a CNFP1us object where the new clauses (or the new native atmost constraint) are
stored.

classmethod atmost (lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an AtMostK constraint, i.e. of Z?:l x; < k.
The method shares the arguments and the return type with method CardEnc.atleast (). Please, see
it for details.

classmethod equals (lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an EqualsK constraint, i.e. of Z?:l x; = k. The
method makes consecutive calls of both CardEnc.atleast () and CardEnc.atmost (). It shares
the arguments and the return type with method CardEnc.atleast (). Please, see it for details.

class pysat.card.EncType
This class represents a C-like enum type for choosing the cardinality encoding to use. The values denoting the
encodings are:

pairwise =
segcounter =
sortnetwrk =
cardnetwrk =
bitwise =
ladder =
totalizer =
mtotalizer =
kmtotalizer =
native =

O 00 ~J o Ul WN P O

The desired encoding can be selected either directly by its integer identifier, e.g. 2, or by its alphabetical name,
e.g. EncType.sortnetwrk.

Note that while most of the encodings are produced as a list of clauses, the “native” encoding of MiniCard is
managed as one clause. Given an AtMostK constraint Y ., x; < k, the native encoding represents it as a pair
[lits, k], where 1its is alist of size n containing literals in the sum.

class pysat.card.ITotalizer (lits=[], ubound=1, top_id=None)
This class implements the iterative totalizer encoding'!. Note that TTotalizer can be used only for creating
AtMostK constraints. In contrast to class EncType, this class is not abstract and its objects once created can
be reused several times. The idea is that a totalizer tree can be extended, or the bound can be increased, as well
as two totalizer trees can be merged into one.

The constructor of the class object takes 3 default arguments.
Parameters
e lits (iterable (int))—alist of literals to sum.
* ubound (int) — the largest potential bound to use.
* top_id (integer or None)-— top variable identifier used so far.

The encoding of the current tree can be accessed with the use of CIVF" variable stored as self.cnf. Potential
bounds are not imposed by default but can be added as unit clauses in the final CNF formula. The bounds are
stored in the list of Boolean variables as se1f.rhs. A concrete bound k can be enforced by considering a unit
clause —self.rhs[k]. Note that —self.rhs [0] enforces all literals of the sum to be false.

1.1. Core PySAT modules 5
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An ITotalizer object should be deleted if it is not needed anymore.

Possible usage of the class is shown below:

>>> from pysat.card import ITotalizer

>>> ¢ ITotalizer (lits=[1, 2, 3], ubound=1)

>>> print (t.cnf.clauses)

((-2, 41, (-1, 41, (-1, -2, 51, [-4, 6], [-5, 71, [-3, 6], [-3, -4, 71]
>>> print (t.rhs)

[6, 7]

>>> t.delete()

Alternatively, an object can be created using the with keyword. In this case, the object is deleted automatically:

>>> from pysat.card import ITotalizer
>>> with ITotalizer (lits=[1, 2, 3], ubound=1l) as t:
.. print (t.cnf.clauses)
((-2, 41, (-1, 41, (-1, -2, 51, [-4, 6], [-5, 71, [-3, 6], [-3, -4, 7]]
. print (t.rhs)
[6, 7]

delete ()
Destroys a previously constructed ITotalizer object. Internal variables self.cnf and self.rhs
get cleaned.

extend (lits=[], ubound=None, top_id=None)
Extends the list of literals in the sum and (if needed) increases a potential upper bound that can be imposed
on the complete list of literals in the sum of an existing TTotalizer object to a new value.

Parameters
e lits (iterable (int)) - additional literals to be included in the sum.
e ubound (int)— anew upper bound.
* top_id(integer or None)-anew top variable identifier.
The top identifier top_id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree augmented with new literals in
the sum and updating the upper bound. As a result, it appends the new clauses to the list of clauses of CNF
self.cnf. The number of newly created clauses is stored in variable self.nof_new.

Also, if the upper bound is updated, a list of bounds self.rhs gets increased and its length becomes
ubound+1. Otherwise, it is updated with new values.

The method can be used in the following way:

>>> from pysat.card import ITotalizer

>>> t = ITotalizer (lits=[1, 2], ubound=1)

>>> print (t.cnf.clauses)

(-2, 31, -1, 31, [-1, -2, 4]]

>>> print (t.rhs)

[3, 4]

>>>

>>> t.extend(lits=[5], ubound=2)

>>> print (t.cnf.clauses)

(-2, 31, (-1, 31, [-1, -2, 4], [-5, 61, [-3, 61, [-4, 71, [-3, =5, 71, [-4, -
-5, 8]1]

>>> print (t.cnf.clauses[-t.nof_new:])

[[-5, 6], [-3, 61, [-4, 71, [-3, -5, 71, [-4, -5, 8]1]

(continues on next page)
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(continued from previous page)

>>> print (t.rhs)
(6, 7, 8]
>>> t.delete ()

increase (ubound=1, top_id=None)
Increases a potential upper bound that can be imposed on the literals in the sum of an existing
ITotalizer object to a new value.

Parameters
* ubound (int) — a new upper bound.
* top_id (integer or None)-anew top variable identifier.
The top identifier top_1id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree up to the new upper bound given
and appends them to the list of clauses of CNF" sel1f.cnf. The number of newly created clauses is stored
in variable self.nof_new.

Also, a list of bounds self . rhs gets increased and its length becomes ubound+1.

The method can be used in the following way:

>>> from pysat.card import ITotalizer

>>> t = ITotalizer (lits=[1, 2, 3], ubound=1)

>>> print (t.cnf.clauses)

({-2, 41, [-1, 41, (-1, -2, 5], [-4, 6], [-5, 71, [-3, 6], [-3, -4, 7]]
>>> print (t.rhs)

(6, 7]

>>>

>>> t.increase (ubound=2)

>>> print (t.cnf.clauses)

({-2, 41, [-1, 41, (-1, -2, 5], [-4, 6], [=5, 71, [-3, 61, [-3, -4, 71, [-3, -
-5, 81]

>>> print (t.cnf.clauses[-t.nof_new:])

[[-3, -5, 8]]

>>> print (t.rhs)

[6, 7, 8]

>>> t.delete()

merge_with (another, ubound=None, top_id=None)
This method merges a tree of the current TTotalizer object, with a tree of another object and (if
needed) increases a potential upper bound that can be imposed on the complete list of literals in the sum
of an existing I Totalizer object to a new value.

Parameters
* another (ITotalizer) — another totalizer to merge with.
* ubound (int)— anew upper bound.
* top_id (integer or None)-anew top variable identifier.
The top identifier top_id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree merged with another totalizer
tree into one sum and updating the upper bound. As a result, it appends the new clauses to the list of
clauses of CNF' self.cnf. The number of newly created clauses is stored in variable self.nof_new.

1.1.
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Also, if the upper bound is updated, a list of bounds self.rhs gets increased and its length becomes
ubound+1. Otherwise, it is updated with new values.

The method can be used in the following way:

>>> from pysat.card import ITotalizer

>>> with ITotalizer(lits=[1, 2], ubound=1) as tl:
.. print (tl.cnf.clauses)

([-2, 31, [-1, 3], [-1, -2, 4]]

. print (tl.rhs)

[3, 4]

t2 = ITotalizer (lits=[5, 6], ubound=1)
. print (tl.cnf.clauses)
[[_61 7]! [_57 7]/ [_5/ _61 8}]
print (tl.rhs)

tl.merge_with (t2)
. print (tl.cnf.clauses)
(-2, 31, (-1, 31, -1, -2, 4], [-6, 71, [-5, 71, [-5, -6, 81, [-7, 9], [-8
101, [-3, 91, [-4, 101, [-3, -7, 1011
Ce . print (tl.cnf.clauses[-tl.nof_new:])
(-6, 71, (-5, 71, [-5, -6, 8], [-7, 91, [-8, 101, [-3, 91, [—-4, 101, [-3, -7,
~ 10]]
C. print (tl.rhs)
[9, 10]

t2.delete ()

new (lits=[], ubound=1, top_id=None)
The actual constructor of TTotalizer. Invoked from self.__ _init__ (). Creates an object of
ITotalizer given a list of literals in the sum, the largest potential bound to consider, as well as the top
variable identifier used so far. See the description of TTotalizer for details.

exception pysat.card.NoSuchEncodingError
This exception is raised when creating an unknown an AtMostk, AtLeastK, or EqualK constraint encoding.

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

1.1.2 Boolean formula manipulation (pysat . formula)

List of classes

IDPool A simple manager of variable IDs.

CNF Class for manipulating CNF formulas.

CNFPlus CNF formulas augmented with native cardinality con-
straints.

WCNF Class for manipulating partial (weighted) CNF formu-
las.

WCNFPlus WCNF formulas augmented with native cardinality
constraints.

8 Chapter 1. API documentation



PySAT Documentation, Release 0.1.5.dev14

Module description

This module is designed to facilitate fast and easy PySAT-development by providing a simple way to manipulate
formulas in PySAT. Although only clausal formulas are supported at this point, future releases of PySAT are expected
to implement data structures and methods to manipulate arbitrary Boolean formulas. The module implements the CNF
class, which represents a formula in conjunctive normal form (CNF).

Recall that a CNF formula is conventionally seen as a set of clauses, each being a set of literals. A literal is a Boolean
variable or its negation. In PySAT, a Boolean variable and a literal should be specified as an integer. For instance,
a Boolean variable x5 is represented as integer 25. A literal —x1o should be specified as —10. Moreover, a clause
(mx2 V x19 V 246) should be specified as [-2, 19, 46] in PySAT. Unit size clauses are to be specified as unit size
lists as well, e.g. a clause (x3) is a list [3].

CNF formulas can be created as an object of class CNF'. For instance, the following piece of code creates a CNF
formula (-1 V z2) A (mz2 V 3).

>>> from pysat.formula import CNF
>>> cnf = CNF ()

>>> cnf.append([-1, 2])

>>> cnf.append([-2, 3])

The clauses of a formula can be accessed through the clauses variable of class CNF, which is a list of lists of
integers:

>>> print (cnf.clauses)
(-1, 21, [-2 ,31]

The number of variables in a CNF formula, i.e. the largest variable identifier, can be obtained using the nv variable,
e.g.

>>> print (cnf.nv)
3

Class CNF has a few methods to read and write a CNF formula into a file or a string. The formula is read/written in
the standard DIMACS CNF format. A clause in the DIMACS format is a string containing space-separated integer
literals followed by 0. For instance, a clause (—xg V 219 V 4¢) is written as -2 19 46 0 in DIMACS. The clauses
in DIMACS should be preceded by a preamble, which is aline p cnf nof_variables nof_clauses, where
nof_variables and nof_clauses are integers. A preamble line for formula (—z1 V z2) A (—z2 V x3) would
bep cnf 3 2. The complete DIMACS file describing the formula looks this:

p cnf 3 2
-120
-2 30

Reading and writing formulas in DIMACS can be done with PySAT in the following way:

>>> from pysat.formula import CNF

>>> f1 = CNF (from_file='some-file-name.cnf') # reading from file
>>> fl.to_file('another—-file-name.cnf') # writing to a file

>>>

>>> with open('some-file-name.cnf', 'r+') as fp:

£f2 = CNF (from_fp=£fp) # reading from a file pointer

fp.seek (0)

.. f2.to_fp(fp) # writing to a file pointer
>>>
>>> f3 = CNF (from_string='p cnf 3 3\n-1 2 0\n-2 3 0\n-3 0\n")

(continues on next page)

1.1. Core PySAT modules 9
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(continued from previous page)

>>> print (£3.clauses)
[[711 2]/ [72! 3]/ [7311
>>> print (£3.nv)

3

Besides plain CNF formulas, the pysat . formula module implements an additional class for dealing with partial
and weighted partial CNF formulas, i.e. WCNF formulas. A WCNF formula is a conjunction of two sets of clauses:
hard clauses and soft clauses, i.e. F = H A S. Soft clauses of a WCNF are labeled with integer weights, i.e. a soft
clause of S is a pair (¢;, w;). In partial (unweighted) formulas, all soft clauses have weight 1.

WCNEF can be of help when solving optimization problems using the SAT technology. A typical example of where a
WCNF formula can be used is maximum satisfiability (MaxSAT), which given a WCNF formula F = H A S targets
satisfying all its hard clauses H and maximizing the sum of weights of satisfied soft clauses, i.e. maximizing the value
of >, cowi- ¢

An object of class WCNF has two variables to access the hard and soft clauses of the corresponding formula: hard
and soft. The weights of soft clauses are stored in variable wght.

>>> from pysat.formula import WCNF
>>>

>>> wcnf = WCNF ()

(
>>> wenf.append ([-1, -21)
>>> wcnf.append([1], weight=1)
>>> wcnf.append([2], weight=3) # the formula becomes unsatisfiable
>>>
>>> print (wenf.hard)
[[-1, -2]]
>>> print (wenf.soft)
[[1]1, [2]]
>>> print (wenf.wght)
[1, 3]

A properly constructed WCNF formula must have a top weight, which should be equal to 1 + ZCie s w;. Top weight
of a formula can be accessed through variable t opw.

>>> wenf.topw = sum(wcnf.wght) + 1 # (1 + 3) + 1
>>> print (wenf.topw)
5

Note: Although it is not aligned with the WCNF format description, starting with the 0.1.5.dev8 release, PySAT is
able to deal with WCNF formulas having not only integer clause weights but also weights represented as floating point
numbers. Moreover, negative weights are also supported.

Additionally to classes CNF' and WCNF, the module provides the extended classes CNFP1us and WCNFP1us. The
only difference between ?CNF and ?CNFP lus is the support for native cardinality constraints provided by the Mini-
Card solver (see pysat . card for details). The corresponding variable in objects of CNFP1us (WCNEFPlus, resp.)
responsible for storing the AtMostK constraints is atmosts (atms, resp.). Note that at this point, AtMostK con-
straints in WCNF can be hard only.

Besides the implementations of CNF and WCNF formulas in PySAT, the pysat . formula module also provides
a way to manage variable identifiers. This can be done with the use of the IDPool manager. With the use of the
CNF and WCNE classes as well as with the TDPoo variable manager, it is pretty easy to develop practical problem
encoders into SAT or MaxSAT/MinSAT. As an example, a PHP formula encoder is shown below (the implementation
can also be found in examples.genhard. PHP).

10 Chapter 1. API documentation
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from pysat.formula import CNF

cnf

= CNF () # we will store the formula here

# nof_holes 1is given

# initializing the pool of variable ids
vpool = IDPool (start_from=1)
pigeon = lambda i, Jj: vpool.id('pigeon @ '.format (i, 3J))

# placing all pigeons into holes
for i in range(l, nof_holes + 2):

cnf.append([pigeon(i, Jj) for j in range(l, nof_holes + 1)])

# there cannot be more than 1 pigeon in a hole
pigeons = range(l, nof_holes + 2)
for j in range(l, nof_holes + 1):

for comb in itertools.combinations (pigeons, 2):

cnf.append([-pigeon(i, j) for i in comb])

Module details

class pysat.formula.CNF (from_file=None, from_fp=None, from_string=None, from_clauses=[],

from_aiger=None, comment_lead=["c'])
Class for manipulating CNF formulas. It can be used for creating formulas, reading them from a file, or writing
them to a file. The comment_1lead parameter can be helpful when one needs to parse specific comment lines
starting not with character ¢ but with another character or a string.

Parameters
e from_file (str)-aDIMACS CNF filename to read from
* from fp (file_pointer) - afile pointer to read from
* from_string (str) - a string storing a CNF formula
* from clauses (l1ist (list (int)))—alistof clauses to bootstrap the formula with

* from_aiger (aiger.AIG (see py-aiger package)) — an AIGER circuit to bootstrap the
formula with

* comment_lead (1ist (str))—alist of characters leading comment lines

append (clause)
Add one more clause to CNF formula. This method additionally updates the number of variables, i.e.
variable self . nv, used in the formula.

Parameters clause (1ist (int))—anew clause to add.

>>> from pysat.formula import CNF

>>> cnf = CNF (from_clauses=[[-1, 2], [311)
>>> cnf.append([-3, 41])

>>> print (cnf.clauses)

(-1, 21, (31, [-3, 41]

copy ()
This method can be used for creating a copy of a CNF object. It creates another object of the CNF class

and makes use of the deepcopy functionality to copy the clauses.

Returns an object of class CNF.

1.1.
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Example:

>>> cnfl = CNF (from_clauses=[[-1, 2], [111])
>>> cnf2 = cnfl.copy()

>>> print (cnf2.clauses)

(-1, 21, [11]

>>> print (cnf2.nv)

2

extend (clauses)
Add several clauses to CNF formula. The clauses should be given in the form of list. For every clause in
the list, method append () is invoked.

Parameters clauses (1ist (1ist (int)))— alist of new clauses to add.

Example:

>>> from pysat.formula import CNF

>>> cnf CNF (from_clauses=[[-1, 2], [311)
>>> cnf.extend ([[-3, 41, [5, 611)

>>> print (cnf.clauses)

(-1, 21, (31, (-3, 41, [5, 6]]

from_aiger (aig, vpool=None)
Create a CNF formula by Tseitin-encoding an input AIGER circuit.

Input circuit is expected to be an object of class aiger.AIG. Alternatively, it can be specified as an
aiger.BoolExpr, or an *.aag filename, or an AIGER string to parse. (Classes aiger.AIG and
aiger.BoolExpr are defined in the py-aiger package.)

Parameters
* aig(aiger.AIG (see py-aiger package)) — an input AIGER circuit
* vpool (IDPool) — pool of variable identifiers (optional)

Example:

>>> import aiger

>>> x, y, z = aiger.atom('x'), aiger.atom('y'), aiger.atom('z")
>>> expr = ~(x | y) & z

>>> print (expr.aigqg)

aag 5 3 0 1 2

2

4

8

10

6 3 5

10 6 8
i0 y
il x
i2 z
o0 6
>>>

c454aea-c9el-11e9-bbe3-3af9d34370a9

>>> from pysat.formula import CNF

>>> cnf = CNF (from_aiger=expr.aiq)

>>> print (cnf.nv)

5

>>> print (cnf.clauses)

(3, 2, 41, (-3, -41, (-2, —-41, [-4, -1, 51, [4, -51, [1, -5]]

(continues on next page)
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(continued from previous page)

>>> print ([' <=> '.format (v, cnf.vpool.obj(v)) for v in cnf.inps])
['3 <> vy', "2 <> x', "l <-> z"']
>>> print ([’ <=> '.format (v, cnf.vpool.obj(v)) for v in cnf.outs])

['5 <—> 6cd454aca-c9el-11e9-bbe3-3af9d34370a9"']

from_clauses (clauses)

This methods copies a list of clauses into a CNF object.
Parameters clauses (1ist (1ist (int)))— alist of clauses

Example:

>>> from pysat.formula import CNF

>>> cnf = CNF (from_clauses=[[-1, 21, [1, -21, [5]1])
>>> print (cnf.clauses)

(-1, 21, (1, -21, [5]]

>>> print (cnf.nv)

5

from file (fname, comment_lead=['c'], compressed_with="use_ext')

Read a CNF formula from a file in the DIMACS format. A file name is expected as an argument. A default
argument is comment_ lead for parsing comment lines. A given file can be compressed by either gzip,
bzip2, or 1zma.

Parameters
* fname (str)—name of a file to parse.
e comment_lead (list (str))—alist of characters leading comment lines
* compressed_with (str) - file compression algorithm

Note that the compressed_with parameter can be None (i.e. the file is uncompressed), 'gzip"’,
'bzip2', "lzma', or 'use_ext'. The latter value indicates that compression type should be auto-
matically determined based on the file extension. Using ' 1zma ' in Python 2 requires the backports.
1zma package to be additionally installed.

Usage example:

>>> from pysat.formula import CNF

>>> cnfl = CNF ()

>>> cnfl.from_file('some-file.cnf.gz', compressed_with='gzip")
>>>

>>> cnf2 = CNF (from_file="another-file.cnf")

from_f£p (file_pointer, comment_lead=['c'])

Read a CNF formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters
* file pointer (file pointer)— afile pointer to read the formula from.
* comment_lead (list (str))—alist of characters leading comment lines

Usage example:

>>> with open('some-file.cnf', 'r') as fp:
cnfl = CNF ()
cnfl.from_fp (fp)

(continues on next page)
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>>>
>>> with open('another-file.cnf', 'r') as fp:
cnf2 = CNF (from_fp=fp)

from_string (string, comment_lead=['c'])
Read a CNF formula from a string. The string should be specified as an argument and should be in the
DIMACS CNF format. The only default argument is comment_lead, which can be used for parsing
specific comment lines.

Parameters
* string (str) - a string containing the formula in DIMACS.
* comment_lead (I1ist (str))—alist of characters leading comment lines

Example:

>>> from pysat.formula import CNF

>>> cnfl = CNF ()

>>> cnfl.from_string(='p cnf 2 2\n-1 2 0\nl -2 0")
>>> print (cnfl.clauses)

(-1, 21, (1, -2]1

>>>

>>> cnf2 = CNF (from_string='p cnf 3 3\n-1 2 0\n-2 3 0\n-3 0\n'")
>>> print (cnf2.clauses)

(-1, 21, (-2, 31, [-31]

>>> print (cnf2.nv)

3

negate (topv=None)
Given a CNF formula F, this method creates a CNF formula —F. The negation of the formula is encoded
to CNF with the use of auxiliary Tseitin variables'. A new CNF formula is returned keeping all the newly
introduced variables that can be accessed through the auxvars variable.

Note that the negation of each clause is encoded with one auxiliary variable if it is not unit size. Otherwise,
no auxiliary variable is introduced.

Parameters topv (int) — top variable identifier if any.

Returns an object of class CNF'.

>>> from pysat.formula import CNF

CNF (from_clauses=[[-1, 2], [3]1])
>>> neg = pos.negate ()

>>> print (neg.clauses)

(e, -41, (-2, -41, [-1, 2, 4], [4, -3]]
>>> print (neg.auxvars)

(4, -3]

>>> pos

to_file (fname, comments=None, compress_with="use_ext")
The method is for saving a CNF formula into a file in the DIMACS CNF format. A file name is expected
as an argument. Additionally, supplementary comment lines can be specified in the comment s parameter.
Also, a file can be compressed using either gzip, bzip2, or 1zma (xz).

Parameters

¢ fname (str) — a file name where to store the formula.

1 G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic, Part II. pp.
115-125, 1968
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* comments (1ist (str))— additional comments to put in the file.
* compress_with (str) — file compression algorithm

Note that the compress_with parameter can be None (i.e. the file is uncompressed), 'gzip',
'bzip2', 'lzma',or 'use_ext'. The latter value indicates that compression type should be automat-
ically determined based on the file extension. Using ' Lzma ' in Python 2 requires the backports.lzma
package to be additionally installed.

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF ()

>>> # the formula is filled with a bunch of clauses
>>> cnf.to_file('some-file-name.cnf') # writing to a file

to_f£p (file_pointer, comments=None)

The method can be used to save a CNF formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comment s parameter.

Parameters
* fname (str) — a file name where to store the formula.
* comments (1ist (str))— additional comments to put in the file.

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF ()

>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.cnf', 'w') as fp:
cnf.to_fp(fp) # writing to the file pointer

weighted()

This method creates a weighted copy of the internal formula. As a result, an object of class WCNF is
returned. Every clause of the CNF formula is soft in the new WCNF formula and its weight is equal to 1.
The set of hard clauses of the formula is empty.

Returns an object of class WCNE.

Example:

>>> from pysat.formula import CNF

>>> cnf = CNF (from_clauses=[[-1, 21, [3, 411)
>>>
>>> wcnf = cnf.weighted()

>>> print (wcnf.hard)
[]

>>> print (wenf.soft)
(-1, 21, 3, 411
>>> print (wenf.wght)
(1, 1]

class pysat.formula.CNFPlus (from_file=None,  from_fp=None,  from_string=None, com-

ment_lead=['c'])

CNF formulas augmented with native cardinality constraints.

This class inherits most of the functionality of the CNF class. The only difference between the two is that
CNF'P1us supports native cardinality constraints of MiniCard.

1.1. Core PySAT modules 15
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The parser of input DIMACS files of CNFP1us assumes the syntax of AtMostK and AtLeastK constraints
defined in the description of MiniCard:

c Example: Two cardinality constraints followed by a clause
p cnf+ 7 3

1 -235-7<=3

4 5 6 -7 >= 2

3570

Each AtLeastK constraint is translated into an AtMostK constraint in the standard way: Z?:l x; >k <
S —x; < (n— k). Internally, AtMostK constraints are stored in variable atmosts, each being a pair
(lits, k), where 1its is a list of literals in the sum and k is the upper bound.

Example:

>>> from pysat.formula import CNFPlus

>>> cnf = CNFPlus (from_string='p cnf+ 7 3\nl -2 3 5 -7 <= 3\n4 5 6 -7 >= 2\n 3 5,
<7 0\n")

>>> print (cnf.clauses)

[[3, 5, 71]

>>> print (cnf.atmosts)

rrrx, -2, 3, 5, -71, 31, [[-4, -5, -6, 71, 211

>>> print (cnf.nv)

7

For details on the functionality, see CNF".

append (clause, is_atmost=False)
Add a single clause or a single AtMostK constraint to CNF+ formula. This method additionally updates
the number of variables, i.e. variable self .nv, used in the formula.

If the clause is an AtMostK constraint, this should be set with the use of the additional default argument
is_atmost, which is set to False by default.

Parameters
e clause (list (int))—anew clause to add.

e is_atmost (bool)—if True, the clause is AtMostK.

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus ()
>>> cnf.append([-3, 4])

>>> cnf.append([[1, 2, 3], 1], is_atmost=True)
>>> print (cnf.clauses)
[[-3, 41]

>>> print (cnf.atmosts)
(rx, 2, 31, 1]

copy ()
This method can be used for creating a copy of a CNFPlus object. It creates another object of the CNFPI1us

class, call the copy function of CNF class and makes use of the deepcopy functionality to copy the atmost
constraints.

Returns an object of class CNFPI1us.

Example:

>>> cnfl = CNFPlus ()
>>> cnfl.extend([[-1, 2], [1]1])

(continues on next page)
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(continued from previous page)

>>> cnfl.append([[1, 2], 1], is_atmost=True)
>>> cnf2 = cnfl.copy ()

>>> print (cnf2.clauses)

(-1, 21, [11]

>>> print (cnf2.nv)

2

>>> print (cnf2.atmosts)

(01, 21, 111

from_f£p (file_pointer, comment_lead=['c'])
Read a CNF+ formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters
 file pointer (file pointer)— afile pointer to read the formula from.
* comment_lead (1ist (str))—alist of characters leading comment lines

Usage example:

>>> with open('some-file.cnf+', 'r') as fp:

cnfl = CNFPlus ()

.. cnfl.from_fp (fp)

>>>

>>> with open('another-file.cnf+', 'r') as fp:
cnf2 = CNFPlus (from_fp=£fp)

to_£p (file_pointer, comments=None)
The method can be used to save a CNF+ formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comment s parameter.

Parameters
¢ fname (str) — a file name where to store the formula.
* comments (1ist (str)) - additional comments to put in the file.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus ()

>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.cnf+', 'w') as fp:

cnf.to_fp (fp) # writing to the file pointer

weighted ()
This method creates a weighted copy of the internal formula. As a result, an object of class WCNFPIus
is returned. Every clause of the CNFPlus formula is soft in the new WCNFPlus formula and its weight is
equal to 1. The set of hard clauses of the new formula is empty. The set of cardinality constraints remains
unchanged.

Returns an object of class WCNFP1us.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus ()

(continues on next page)
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>>> cnf.append([-1, 21])

>>> cnf.append([3, 41])

>>> cnf.append ([[1, 2], 1], is_atmost=True)
>>>

>>> wcnf = cnf.weighted()

>>> print (wenf.hard)
[]

>>> print (wenf.soft)
(-1, 21, (3, 41]
>>> print (wenf.wght)
(1, 1]

>>> print (wenf.atms)
(re1, 21, 111

class pysat.formula.IDPool (start_from=1, occupied=[])

A simple manager of variable IDs. It can be used as a pool of integers assigning an ID to any object. Identifiers
are to start from 1 by default. The list of occupied intervals is empty be default. If necessary the top variable ID

can be accessed directly using the t op variable.
Parameters
* start_from (int) - the smallest ID to assign.
* occupied (list (list (int)))—alistof occupied intervals.

id (obj)

The method is to be used to assign an integer variable ID for a given new object. If the object already has

an ID, no new ID is created and the old one is returned instead.

An object can be anything. In some cases it is convenient to use string variable names.
Parameters ob3j — an object to assign an ID to.
Return type int.

Example:

>>> from pysat.formula import IDPool

>>> vpool = IDPool (occupied=[[12, 18], [3, 1011)

>>>

>>> # creating 5 unique variables for the following strings
>>> for i in range(5):

. print (vpool.id ('v ".format (i + 1)))

1
2
11
19
20

In some cases, it makes sense to create an external function for accessing IDPool, e.g.:

>>> # continuing the previous example

>>> var = lambda i: vpool.id('var '".format (1))
>>> var (5)

20

>>> var ('hello_world!")

21

obj (vid)

The method can be used to map back a given variable identifier to the original object labeled by the
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identifier.
Parameters vid (int) — variable identifier.
Returns an object corresponding to the given identifier.

Example:

>>> vpool.obj(21)
'hello_world!"

occupy (start, stop)
Mark a given interval as occupied so that the manager could skip the values from start to stop
(inclusive).

Parameters
* start (int)— beginning of the interval.
* stop (int) —end of the interval.

restart (start_from=1, occupied=[])
Restart the manager from scratch. The arguments replicate those of the constructor of TDPoo 1.

class pysat.formula.WCNF (from_file=None, from_fp=None, from_string=None, com-

ment_lead=['c'])
Class for manipulating partial (weighted) CNF formulas. It can be used for creating formulas, reading them

from a file, or writing them to a file. The comment_lead parameter can be helpful when one needs to parse
specific comment lines starting not with character ¢ but with another character or a string.

Parameters
e from_file (str)-aDIMACS CNF filename to read from
* from fp (file_pointer) - afile pointer to read from
* from_string (str)—a string storing a CNF formula
* comment_lead (1ist (str))—alist of characters leading comment lines

append (clause, weight=None)
Add one more clause to WCNF formula. This method additionally updates the number of variables, i.e.
variable self . nv, used in the formula.

The clause can be hard or soft depending on the weight argument. If no weight is set, the clause is
considered to be hard.

Parameters
e clause (1ist (int))—anew clause to add.

* weight (integer or None) - integer weight of the clause.

>>> from pysat.formula import WCNF
>>> cnf = WCNF ()

>>> cnf.append([-1, 21])
>>> cnf.append([1], weight=10)
>>> cnf.append([-2], weight=20)
>>> print (cnf.hard)

[([-1, 2]]

>>> print (cnf.soft)

(1], [-2]]

>>> print (cnf.wght)

[10, 20]
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copy ()
This method can be used for creating a copy of a WCNF object. It creates another object of the WCNF

class and makes use of the deepcopy functionality to copy both hard and soft clauses.

Returns an object of class WCNE.

Example:

>>> cnfl = WCNF ()

>>> cnfl.append([-1, 2])
>>> cnfl.append([1l], weight=10)
>>>

>>> cnf2 = cnfl.copy ()
>>> print (cnf2.hard)
[[-1, 2]]

>>> print (cnf2.soft)
[[1]1]

>>> print (cnf2.wght)
[10]

>>> print (cnf2.nv)

2

extend (clauses, weights=None)
Add several clauses to WCNF formula. The clauses should be given in the form of list. For every clause
in the list, method append () is invoked.

The clauses can be hard or soft depending on the weights argument. If no weights are set, the clauses
are considered to be hard.

Parameters
* clauses (1ist (1ist (int)))—alist of new clauses to add.
* weights (1ist (int)) - alist of integer weights.

Example:

>>> from pysat.formula import WCNF

>>> cnf = WCNF ()

>>> cnf.extend ([[-3, 4], [5, 611)

>>> cnf.extend ([ [3], [-4], [-5], [-6]], weights=[1, 5, 3, 41])
>>> print (cnf.hard)

[[-3, 41, [5, 6]]

>>> print (cnf.soft)

(131, [-41, [-5]1, [-6]]

>>> print (cnf.wght)

[1, 5, 3, 4]

from_ file (fname, comment_lead=['c'], compressed_with="use_ext')
Read a WCNF formula from a file in the DIMACS format. A file name is expected as an argument. A
default argument is comment_ lead for parsing comment lines. A given file can be compressed by either
gzip, bzip2, or lzma.

Parameters
* fname (str)—name of a file to parse.
* comment_lead (1ist (str))—alist of characters leading comment lines

* compressed_with (str) - file compression algorithm
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Note that the compressed_with parameter can be None (i.e. the file is uncompressed), 'gzip',
'bzip2', "lzma', or 'use_ext'. The latter value indicates that compression type should be auto-
matically determined based on the file extension. Using ' 1zma ' in Python 2 requires the backports.
1zma package to be additionally installed.

Usage example:

>>> from pysat.formula import WCNF

>>> cnfl = WCNF ()

>>> cnfl.from_file('some-file.wcnf.bz2', compressed_with="'bzip2")
>>>

>>> cnf2 = WCNF (from_file='another-file.wcnf')

from_f£p (file_pointer, comment_lead=['c'])
Read a WCNF formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters
e file pointer (file pointer)— afile pointer to read the formula from.
* comment_lead (list (str))—alist of characters leading comment lines

Usage example:

>>> with open('some-file.cnf', 'r') as fp:

cnfl = WCNEF ()

.. cnfl.from_fp (fp)

>>>

>>> with open('another-file.cnf', 'r') as fp:
cnf2 = WCNF (from_fp=£fp)

from_string (string, comment_lead=['c'])
Read a WCNF formula from a string. The string should be specified as an argument and should be in the
DIMACS CNF format. The only default argument is comment_ lead, which can be used for parsing
specific comment lines.

Parameters
* string (str) - a string containing the formula in DIMACS.

* comment_lead (1ist (str))—alist of characters leading comment lines

Example:

>>> from pysat.formula import WCNF

>>> cnfl = WCNF ()

>>> cnfl.from_string(='p wenf 2 2 2\n 2 -1 2 0\nl 1 -2 0")
>>> print (cnfl.hard)

[[-1, 2]]

>>> print (cnfl.soft)

[[1, 2]]

>>>

>>> cnf2 = WCNF (from_string='p wenf 3 3 2\n2 -1 2 0\n2 -2 3 0\nl -3 0\n'")
>>> print (cnf2.hard)

(-1, 21, (-2, 311

>>> print (cnf2.soft)

[[-3]1]

>>> print (cnf2.nv)

3
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normalize_negatives (negatives)
Iterate over all soft clauses with negative weights and add their negation either as a hard clause or a soft
one.

Parameters negatives (list (1ist (int)))— soft clauses with their negative weights.

to_file (fname, comments=None, compress_with="use_ext")
The method is for saving a WCNF formula into a file in the DIMACS CNF format. A file name is expected
as an argument. Additionally, supplementary comment lines can be specified in the comment s parameter.
Also, a file can be compressed using either gzip, bzip2, or 1zma (xz).

Parameters
¢ fname (str) — a file name where to store the formula.
* comments (1ist (str)) - additional comments to put in the file.
* compress_with (str) - file compression algorithm

Note that the compress_with parameter can be None (i.e. the file is uncompressed), 'gzip',

'bzip2', 'lzma',or 'use_ext'. The latter value indicates that compression type should be automat-
ically determined based on the file extension. Using ' 1 zma ' in Python 2 requires the backports.lzma
package to be additionally installed.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNF ()

>>> # the formula is filled with a bunch of clauses
>>> wenf.to_file('some-file—-name.wcnf') # writing to a file

to_£p (file_pointer, comments=None)
The method can be used to save a WCNF formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comment s parameter.

Parameters
¢ fname (str) — a file name where to store the formula.
* comments (list (str)) - additional comments to put in the file.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNFE ()

>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.wcnf', 'w') as fp:
wenf.to_fp(fp) # writing to the file pointer

unweighted ()
This method creates a plain (unweighted) copy of the internal formula. As a result, an object of class CNF’
is returned. Every clause (both hard or soft) of the WCNF formula is copied to the clauses variable of
the resulting plain formula, i.e. all weights are discarded.

Returns an object of class CNF.

Example:
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>>> from pysat.formula import WCNF
>>> wcnf = WCNF ()

>>> wenf.extend ([[-3, 4], [5, 611])
>>> wenf.extend ([[3], [-4], [-5], [-6]], weights=[1, 5, 3, 4])
>>>

>>> cnf = wcnf.unweighted()
>>> print (cnf.clauses)
((-3, 41, [5, 6], [3], [-41, [-5], [-6]]

class pysat.formula.WCNFPlus (from_file=None, from_fp=None, from_string=None,  com-
ment_lead=['c'])
WCNF formulas augmented with native cardinality constraints.
This class inherits most of the functionality of the WCNFE class. The only difference between the two is that
WCNFP1us supports native cardinality constraints of MiniCard.

The parser of input DIMACS files of WCNFPIus assumes the syntax of AtMostK and AtLeastK constraints
following the one defined for CNFP1us in the description of MiniCard:

c Example: Two (hard) cardinality constraints followed by a soft clause
p wenf+ 7 3 10

101 -2 35 -7 <=3

10 4 56 -7 >= 2

53570

Note that every cardinality constraint is assumed to be hard, i.e. soft cardinality constraints are currently not
supported.

Each AtLeastK constraint is translated into an AtMostK constraint in the standard way: > ., x; > k
2?21 —z; < (n — k). Internally, AtMostK constraints are stored in variable atms, each being a pair (1its,
k), where 1its is a list of literals in the sum and k is the upper bound.

Example:

>>> from pysat.formula import WCNFPlus

>>> cnf = WCNFPlus (from_string='p wcenf+ 7 3 10\nl10 1 -2 3 5 -7 <= 3\nl0 4 5 6 -7 >
—= 2\n5 3 5 7 0\n"')

>>> print (cnf.soft)

[[3, 5, 711

>>> print (cnf.wght)

[5]

>>> print (cnf.hard)

[]

>>> print (cnf.atms)

rery, -2, 3, 5, =71, 31, [[-4, -5, -6, 71, 21]
>>> print (cnf.nv)

7

For details on the functionality, see WCNF'.

append (clause, weight=None, is_atmost=False)
Add a single clause or a single AtMostK constraint to WCNF+ formula. This method additionally updates
the number of variables, i.e. variable self . nv, used in the formula.

If the clause is an AtMostK constraint, this should be set with the use of the additional default argument
is_atmost, which is set to False by default.

If is_atmost is setto False, the clause can be either hard or soft depending on the we ight argument.
If no weight is specified, the clause is considered hard. Otherwise, the clause is soft.
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Parameters
e clause (1ist (int))—anew clause to add.
* weight (integer or None)- aninteger weight of the clause.

e is_atmost (bool) —if True, the clause is AtMostK.

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNEPlus ()

>>> cnf.append ([-3, 41])

>>> cnf.append([[1, 2, 3], 1], is_atmost=True)
>>> cnf.append([-1, -2], weight=35)
>>> print (cnf.hard)

[[=3, 4]]

>>> print (cnf.atms)

(L, 2, 31, 1]

>>> print (cnf.soft)

[([-1, -271]

>>> print (cnf.wght)

[35]

copy ()
This method can be used for creating a copy of a WCNFPlus object. It creates another object of the
WCNFP1us class, call the copy function of WCNF class and makes use of the deepcopy functionality to
copy the atmost constraints.

Returns an object of class WCNFP1us.

Example:

>>> cnfl = WCNFPlus ()

>>> cnfl.append([-1, 21])

>>> cnfl.append([1], weight=10)
>>> cnfl.append([[1, 2], 1], is_atmost=True)
>>> cnf2 = cnfl.copy ()

>>> print (cnf2.hard)

[[-1, 2]]

>>> print (cnf2.soft)

[[1]]

>>> print (cnf2.wght)

[10]

>>> print (cnf2.nv)

2

>> print (cnf2.atms)

(rex, 21, 111

from_f£p (file_pointer, comment_lead=["c'])
Read a WCNF+ formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_ 1ead, which can be used for parsing specific comment lines.

Parameters
e file pointer (file pointer)— afile pointer to read the formula from.
* comment_lead (1ist (str))—alist of characters leading comment lines

Usage example:

>>> with open('some-file.wcnf+', 'r') as fp:
cnfl = WCNFPlus ()

(continues on next page)
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(continued from previous page)

cnfl.from_fp (fp)
>>>

>>> with open('another-file.wcnf+', 'r') as fp:
cnf2 = WCNFPlus (from_fp=£fp)

to_f£p (file_pointer, comments=None)
The method can be used to save a WCNF+ formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comment s parameter.

Parameters
e fname (str) — a file name where to store the formula.
* comments (list (str))— additional comments to put in the file.

Example:

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus ()

>>> # the formula is filled with a bunch of clauses

>>> with open('some-file.wcnf+', w') as fp:

cnf.to_fp(fp) # writing to the file pointer

unweighted ()
This method creates a plain (unweighted) copy of the internal formula. As a result, an object of class
CNFPlus is returned. Every clause (both hard or soft) of the original WCNFPlus formula is copied to the
clauses variable of the resulting plain formula, i.e. all weights are discarded.

Note that the cardinality constraints of the original (weighted) formula remain unchanged in the new (plain)
formula.

Returns an object of class CNFP1us.

Example:

>>> from pysat.formula import WCNF

>>> wcnf = WCNFPlus ()

>>> wcnf.extend([[-3, 4], [5, 611)

>>> wenf.extend ([ [3]1, [-41, [-5], [-6]1], weights=[1, 5, 3, 4])
>>> wcnf.append([[1, 2, 3], 1], is_atmost=True)
>>>

>>> cnf = wenf.unweighted ()

>>> print (cnf.clauses)

[((-3, 41, [5, 61, [31, [-4], [-5], [-6]]

>>> print (cnf.atmosts)

(rex, 2, 31, 111
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1.1.3 Pseudo-Boolean encodings (pysat .pb)

List of classes

EncType This class represents a C-like enum type for choosing
the pseudo-Boolean encoding to use.
PBEnc Abstract class responsible for the creation of pseudo-

Boolean constraints encoded to a CNF formula.

Module description

Note: Functionality of this module is available only if the PyPBLib package is installed, e.g. from PyPI:

$ pip install pypblib

This module provides access to the basic functionality of the PyPBLib library developed by the Logic Optimization
Group of the University of Lleida. PyPBLib provides a user with an extensive Python API to the well-known PBLib
library'. Note the PyPBLib has a number of additional features that cannot be accessed through PySAT at this point.
(One concrete example is a range of cardinality encodings, which clash with the internal pysat . card module.) If a
user needs some functionality of PyPBLib missing in this module, he/she may apply PyPBLib as a standalone library,
when working with PySAT.

A pseudo-Boolean constraint is a constraint of the form: (> | a; - z;) o k, where a; € N, z; € {y;,—w;}, y; € B,
and o € {<,=,>}. Pseudo-Boolean constraints arise in a number of important practical applications. Thus, several
encodings of pseudo-Boolean constraints into CNF formulas are known?. The list of pseudo-Boolean encodings
supported by this module include BDD?#, sequential weight counters®, sorting networks®, adder networks?, and binary
merge®. Access to all cardinality encodings can be made through the main class of this module, which is PBEnc.

Module details

class pysat.pb.EncType
This class represents a C-like enum type for choosing the pseudo-Boolean encoding to use. The values denoting
the encodings are:

best =
bdd =
segcounter =
sortnetwrk =
adder =
binmerge =

g w N O

The desired encoding can be selected either directly by its integer identifier, e.g. 2, or by its alphabetical name,
e.g. EncType.segcounter.

! Tobias Philipp, Peter Steinke. PBLib - A Library for Encoding Pseudo-Boolean Constraints into CNF. SAT 2015. pp. 9-16

2 Olivier Roussel, Vasco M. Manquinho. Pseudo-Boolean and Cardinality Constraints. Handbook of Satisfiability. 2009. pp. 695-733

3 Niklas Eén, Niklas Sorensson. Translating Pseudo-Boolean Constraints into SAT. JSAT. vol. 2(1-4). 2006. pp. 1-26

4 Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell. BDDs for Pseudo-Boolean Constraints - Revisited. SAT. 2011.
pp. 61-75

5 Steffen Holldobler, Norbert Manthey, Peter Steinke. A Compact Encoding of Pseudo-Boolean Constraints into SAT. KI. 2012. pp. 107-118

6 Norbert Manthey, Tobias Philipp, Peter Steinke. A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized
Arc Consistency Is Maintained. KI. 2014. pp. 123-134

26 Chapter 1. API documentation


https://pypi.org/project/pypblib/
http://ulog.udl.cat/
http://ulog.udl.cat/
http://tools.computational-logic.org/content/pblib.php
http://tools.computational-logic.org/content/pblib.php
http://hardlog.udl.cat/static/doc/pypblib/html/index.html

PySAT Documentation, Release 0.1.5.dev14

All the encodings are produced and returned as a list of clauses in the pysat . formula.CNF format.

Note that the encoding type can be set to best, in which case the encoder selects one of the other encodings
from the list (in most cases, this invokes the bdd encoder).

exception pysat.pb.NoSuchEncodingError
This exception is raised when creating an unknown LEQ, GEQ, or Equals constraint encoding.

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

class pysat.pb.PBEnc
Abstract class responsible for the creation of pseudo-Boolean constraints encoded to a CNF formula. The class
has three main class methods for creating LEQ, GEQ, and Equals constraints. Given (1) either a list of weighted
literals or a list of unweighted literals followed by a list of weights, (2) an integer bound and an encoding
type, each of these methods returns an object of class pysat. formula. CNF representing the resulting CNF
formula.

Since the class is abstract, there is no need to create an object of it. Instead, the methods should be called di-
rectly as class methods, e.g. PBEnc.atmost (wlits, bound) or PBEnc.equals (lits, weights,
bound). An example usage is the following:

>>> from pysat.pb import =«

>>> cnf = PBEnc.atmost (lits=[1, 2, 3], weights=[1, 2, 3], bound=3)

>>> print (cnf.clauses)

rr41, (-1, -51, (-2, -51, [5, -3, -6], [6]]

>>> cnf = PBEnc.equals(lits=[1, 2, 3], weights=[1, 2, 3], bound=3,
—encoding=EncType.bdd)

>>> print (cnf.clauses)

rr41, (-5, -21, [-5, 2, -11, [-5, -11, [-e, 11, [-7, -2, 6], [-7, 21, [-7, 6], [-
-8, -3, 51, [-8, 3, 71, [-8, 5, 71, [8]]

classmethod atleast (lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
A synonym for PBEnc.geq ().

classmethod atmost (lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
A synonim for PBEnc. leqg().

classmethod equals (lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a weighted EqualsK constraint, i.e. of
Z?:l a; - ©; = k. The method shares the arguments and the return type with method PBEnc. leqg().
Please, see it for details.

classmethod geq (lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a GEQ (weighted AtLeastK) constraint, i.e. of
>, ai-x; > k. The method shares the arguments and the return type with method PBEnc. leq ().
Please, see it for details.

classmethod leq (lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a LEQ (weighted AtMostK) constraint, i.e. of
>, ai-x; < k. The resulting set of clauses is returned as an object of class formula. CNF.

The input list of literals can contain either integers or pairs (1, w), where 1 is an integer literal and
w is an integer weight. The latter can be done only if no weights are specified separately. The type of
encoding to use can be specified using the encoding parameter. By default, it is set to EncType . best,
i.e. it is up to the PBLib encoder to choose the encoding type.

Parameters

e lits (iterable (int)) - alist of literals in the sum.
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* weights (iterable (int))— alist of weights

¢ bound (int) — the value of bound k.

* top_id (integer or None) - top variable identifier used so far.

* vpool (IDPool) — variable pool for counting the number of variables.
* encoding (integer) — identifier of the encoding to use.

Return type pysat.formula.CNF

1.1.4 SAT solvers’ APl (pysat.solvers)

List of classes

SolverNames This class serves to determine the solver requested by a
user given a string name.

Solver Main class for creating and manipulating a SAT solver.

Cadical CaDiCaL SAT solver.

Glucose3 Glucose 3 SAT solver.

Glucose4 Glucose 4.1 SAT solver.

Lingeling Lingeling SAT solver.

MapleChrono MapleLCMDistChronoBT SAT solver.

MapleCM MapleCM SAT solver.

Maplesat MapleCOMSPS_LRB SAT solver.

Minicard Minicard SAT solver.

Minisat22 MiniSat 2.2 SAT solver.

MinisatGH MiniSat SAT solver (version from github).

Module description

This module provides incremental access to a few modern SAT solvers. The solvers supported by PySAT are:
e CaDiCaL (rel-1.0.3)
¢ Glucose (3.0)
¢ Glucose (4.1)
* Lingeling (bbc-9230380-160707)
* MapleLCMDistChronoBT (SAT competition 2018 version)
e MapleCM (SAT competition 2018 version)
* Maplesat (MapleCOMSPS_LRB)
e Minicard (1.2)
e Minisat (2.2 release)
¢ Minisat (GitHub version)

All solvers can be accessed through a unified MiniSat-like' incremental” interface described below.

! Niklas Eén, Niklas Sorensson. An Extensible SAT-solver. SAT 2003. pp. 502-518
2 Niklas Eén, Niklas Sorensson. Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4). 2003. pp. 543-560
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The module provides direct access to all supported solvers using the corresponding classes Glucose3, Glucose4,
Lingeling,MapleChrono, MapleCM, Maplesat,Minicard, Minisat22, and MinisatGH. However, the
solvers can also be accessed through the common base class Solver using the solver name argument. For example,
both of the following pieces of code create a copy of the Glucose3 solver:

>>> from pysat.solvers import Glucose3, Solver

>>>

>>> g = Glucose3 ()

>>> g.delete()

>>>

>>> s = Solver (name='g3")
>>> s.delete()

The pysat . solversmodule is designed to create and manipulate SAT solvers as oracles, i.e. it does not give access
to solvers’ internal parameters such as variable polarities or activities. PySAT provides a user with the following basic
SAT solving functionality:

* creating and deleting solver objects

* adding individual clauses and formulas to solver objects

* making SAT calls with or without assumptions

* propagating a given set of assumption literals

* setting preferred polarities for a (sub)set of variables

* extracting a model of a satisfiable input formula
 enumerating models of an input formula

e extracting an unsatisfiable core of an unsatisfiable formula
* extracting a DRUP proof logged by the solver

PySAT supports both non-incremental and incremental SAT solving. Incrementality can be achieved with the use of
the MiniSat-like assumption-based interface?. It can be helpful if multiple calls to a SAT solver are needed for the
same formula using different sets of “assumptions”, e.g. when doing consecutive SAT calls for formula F A (a;, A
oo Naj+jy) and F A (@i, A ... Aagytj,), where every a;, is an assumption literal.

There are several advantages of using assumptions: (1) it enables one to keep and reuse the clauses learnt during
previous SAT calls at a later stage and (2) assumptions can be easily used to extract an unsatisfiable core of the
formula. A drawback of assumption-based SAT solving is that the clauses learnt are longer (they typically contain
many assumption literals), which makes the SAT calls harder.

In PySAT, assumptions should be provided as a list of literals given to the solve () method:

>>> from pysat.solvers import Solver
>>> s = Solver()
>>>
# assume that solver s 1s fed with a formula
>>>
>>> s.solve () # a simple SAT call
True
>>>
>>> s.solve (assumptions=[1, -2, 3]) # a SAT call with assumption literals
False
>>> s.get_core() # extracting an unsatisfiable core
[3, 1]

In order to shorten the description of the module, the classes providing direct access to the individual solvers, i.e.
classes Cadical, Glucose3, Glucose4, Lingeling, MapleChrono, MapleCM, Maplesat, Minicard,
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Minisat?22, and MinisatGH, are omitted. They replicate the interface of the base class Solver and, thus, can
be used the same exact way.

Module details

exception pysat.solvers.NoSuchSolverError

This exception is raised when creating a new SAT solver whose name does not match any name in
SolverNames. The list of known solvers includes the names ‘cadical’, ‘glucose3’, ‘glucose4’, ‘lingeling’,
‘maplechrono’, ‘maplecm’, ‘maplesat’, ‘minicard’, ‘minisat22’, and ‘minisatgh’.

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

class pysat.solvers.Solver (name='m22', bootstrap_with=None, use_timer=~False, **kwargs)

Main class for creating and manipulating a SAT solver. Any available SAT solver can be accessed as an object
of this class and so Solver can be seen as a wrapper for all supported solvers.

The constructor of Solver has only one mandatory argument name, while all the others are default. This
means that explicit solver constructors, e.g. Glucose3 or MinisatGH etc., have only default arguments.

Parameters
* name (str) - solver’s name (see SolverNames).

* bootstrap_ with (iterable (iterable (int))) — a list of clauses for solver ini-
tialization.

* use_timer (bool)— whether or not to measure SAT solving time.

The bootstrap_with argument is useful when there is an input CNF formula to feed the solver with. The
argument expects a list of clauses, each clause being a list of literals, i.e. a list of integers.

If set to True, the use_t imer parameter will force the solver to accumulate the time spent by all SAT calls
made with this solver but also to keep time of the last SAT call.

Once created and used, a solver must be deleted with the delete () method. Alternatively, if created using the
with statement, deletion is done automatically when the end of the with block is reached.

Given the above, a couple of examples of solver creation are the following:

>>> from pysat.solvers import Solver, Minisat22

>>>
>>> s = Solver (name='g4")
>>> s.add_clause([-1, 2])
>>> g.add_clause([-1, —-2])
>>> s.solve ()
True
>>> print (s.get_model())
[-1, -2]
>>> s.delete ()
>>>
>>> with Minisat22 (bootstrap_with=[[-1, 2], [-1, -2]]) as m:
m.solve ()

True

. print (m.get_model ())
[-1, -2]

Note that while all explicit solver classes necessarily have default arguments bootstrap_with and
use_timer, solvers Cadical, Lingeling, Glucose3, Glucose4, MapleChrono, MapleCM and
Maplesat can have additional default arguments. One such argument supported by Glucose3 and
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Glucosed butalso by Cadical, Lingeling, MapleChrono, MapleCM, and Maplesat is DRUP proof
logging. This can be enabled by setting the with_proof argument to True (False by default):

>>> from pysat.solvers import Lingeling
>>> from pysat.examples.genhard import PHP

>>>

>>> cnf = PHP (nof_holes=2) # pigeonhole principle for 3 pigeons

>>>

>>> with Lingeling (bootstrap_with=cnf.clauses, with_proof=True) as 1:
l.solve ()

False

.. 1.get_proof ()
['75 Ol, ’6 Ol, V72 Ol, |74 Ol, ll Ol, |3 Ol, lol]

Additionally and in contrast to Cadical and Lingeling, both Glucose3 and Glucose4 have one more
default argument incr (False by default), which enables incrementality features introduced in Glucose3®. To
summarize, the additional arguments of Glucose are:

Parameters
* incr (bool) — enable the incrementality features of Glucose3>.
* with_proof (bool) - enable proof logging in the DRUP format.

add_atmost (lits, k, no_return=True)
This method is responsible for adding a new native AtMostK (see pysat.card) constraint into
Minicard.

Note that none of the other solvers supports native AtMostK constraints.

An AtMostK constraintis Y- ; z; < k. A native AtMostK constraint should be given as a pair 1its and
k, where 1its is a list of literals in the sum.

Parameters
e lits (iterable (int)) - alist of literals.
* k (int) — upper bound on the number of satisfied literals

* no_return (bool) — check solver’s internal formula and return the result, if set to
False.

Return type bool if no_returnissetto False.

A usage example is the following:

>>> s = Solver (name='mc', bootstrap_with=[[1], [2], [311])
>>> s.add_atmost (lits=[1, 2, 3], k=2, no_return=False)
False

>>> # the AtMostK constraint 1is 1in conflict with initial unit clauses

add clause (clause, no_return=True)
This method is used to add a single clause to the solver. An optional argument no_return controls
whether or not to check the formula’s satisfiability after adding the new clause.

Parameters
e clause (iterable (int)) - an iterable over literals.

* no_return (bool) — check solver’s internal formula and return the result, if set to
False.

3 Gilles Audemard, Jean-Marie Lagniez, Laurent Simon. Improving Glucose for Incremental SAT Solving with Assumptions: Application to
MUS Extraction. SAT 2013. pp. 309-317
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Return type bool if no_returnissettoFalse.

Note that a clause can be either a 1ist of integers or another iterable type over integers, e.g. tuple or
set among others.

A usage example is the following:

>>> s = Solver (bootstrap_with=[[-1, 2], [-1, -2]11])
>>> s.add_clause([1], no_return=False)
False

append_formula (formula, no_return=True)
This method can be used to add a given list of clauses into the solver.

Parameters
e formula (iterable (iterable (int)))— alist of clauses.

e no_return (bool) — check solver’s internal formula and return the result, if set to
False.

The no_return argument is set to True by default.

Return type bool if no_returnissetto False.

>>> cnf = CNF ()
# assume the formula contains clauses
>>> s = Solver()
>>> s.append_formula (cnf.clauses, no_return=False)
True

clear_interrupt ()
Clears a previous interrupt. If a limited SAT call was interrupted using the interrupt () method, this
method must be called before calling the SAT solver again.

conf_budget (budget=-1)
Set limit (i.e. the upper bound) on the number of conflicts in the next limited SAT call (see
solve_limited()). The limit value is given as a budget variable and is an integer greater than
0. If the budget is set to 0 or —1, the upper bound on the number of conflicts is disabled.

Parameters budget (int) — the upper bound on the number of conflicts.

Example:

>>> from pysat.solvers import MinisatGH

>>> from pysat.examples.genhard import PHP

>>>

>>> cnf = PHP (nof_holes=20) # PHP20 is too hard for a SAT solver
>>> m = MinisatGH (bootstrap_with=cnf.clauses)

>>>

>>> m.conf_budget (2000) # getting at most 2000 conflicts
>>> print (m.solve_limited()) # making a limited oracle call
None

>>> m.delete ()

delete ()
Solver destructor, which must be called explicitly if the solver is to be removed. This is not needed inside
an with block.

enum_models (assumptions=[])
This method can be used to enumerate models of a CNF formula. It can be used as a standard Python
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iterator. The method can be used without arguments but also with an argument assumpt ions, which is
a list of literals to “assume”.

Parameters assumptions (iterable (int)) - alist of assumption literals.
Return type list(int)

Example:

>>> with Solver (bootstrap_with=[[-1, 2], [-2, 3]]) as s:
for m in s.enum_models () :
print (m)

|
[\
~

|
w

-1

(-1, -2, 3]
[-1

(1, 2, 3]
>>>

>>> with Solver (bootstrap_with=[[-1, 2], [-2, 3]]) as s:

for m in s.enum_models (assumptions=[1]):
print (m)

get_core ()
This method is to be used for extracting an unsatisfiable core in the form of a subset of a given set of
assumption literals, which are responsible for unsatisfiability of the formula. This can be done only if the
previous SAT call returned False (UNSAT). Otherwise, None is returned.

Return type list(int) or None.

Usage example:

>>> from pysat.solvers import Minisat22

>>> m = Minisat22()

>>> m.add_clause([-1, 2])

>>> m.add_clause ([-2, 3])

>>> m.add_clause ([-3, 41])

>>> m.solve (assumptions=[1, 2, 3, —-4])

False

>>> print (m.get_core()) # literals 2 and 3 are not in the core
(-4, 1]

>>> m.delete()

get_model ()
The method is to be used for extracting a satisfying assignment for a CNF formula given to the solver. A
model is provided if a previous SAT call returned True. Otherwise, None is reported.

Return type list(int) or None.

Example:

>>> from pysat.solvers import Solver
>>> s = Solver ()

>>> s.add_clause([-1, 21])
>>> s.add_clause ([-1, -21])
>>> s.add_clause([1l, -2])
>>> g.solve ()

True

>>> print (s.get_model ())
(-1, -2]

>>> s.delete()
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get_proof ()
A DRUP proof can be extracted using this method if the solver was set up to provide a proof. Otherwise,
the method returns None.

Return type list(str) or None.

Example:

>>> from pysat.solvers import Solver

>>> from pysat.examples.genhard import PHP

>>>

>>> cnf = PHP (nof_holes=3)

>>> with Solver (name='g4', with_proof=True) as g:
g.append_formula (cnf.clauses)
g.solve ()

False

C.. print (g.get_proof ())

['-8 41 0', '-10 0', '-2 0', '-4 0', '-8 0', '-6 0', '0']

get_status ()
The result of a previous SAT call is stored in an internal variable and can be later obtained using this
method.

Return type Boolean or None.
None is returned if a previous SAT call was interrupted.

interrupt ()
Interrupt the execution of the current limited SAT call (see solve I1imited ()). Canbe used to enforce
time limits using timer objects. The interrupt must be cleared before performing another SAT call (see
clear_interrupt ()).

Behaviour is undefined if used to interrupt a non-limited SAT call (see solve ()).

Example:

>>> from pysat.solvers import MinisatGH

>>> from pysat.examples.genhard import PHP

>>> from threading import Timer

>>>

>>> cnf = PHP (nof_holes=20) # PHP20 is too hard for a SAT solver
>>> m = MinisatGH (bootstrap_with=cnf.clauses)

>>>

>>> def interrupt(s):

>>> s.interrupt ()

>>>

>>> timer = Timer (10, interrupt, [m])
>>> timer.start ()

>>>

>>> print (m.solve_limited())

None

>>> m.delete ()

new (name='m22’', bootstrap_with=None, use_timer=False, **kwargs)
The actual solver constructor invoked from __init__ (). Chooses the solver to run, based on its name.
See Solver for the parameters description.

Raises NoSuchSolverError — if there is no solver matching the given name.

nof_clauses ()
This method returns the number of clauses currently appearing in the formula given to the solver.
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Return type int.

Example:

>>> s = Solver (bootstrap_with=[[-1, 2], [-2, 311)
>>> s.nof_clauses|()
2

nof_vars ()
This method returns the number of variables currently appearing in the formula given to the solver.

Return type int.

Example:

>>> s = Solver (bootstrap_with=[[-1, 2], [-2, 311)
>>> s.nof_vars /()
3

prop_budget (budget=-1)
Set limit (i.e. the upper bound) on the number of propagations in the next limited SAT call (see
solve_limited()). The limit value is given as a budget variable and is an integer greater than
0. If the budget is set to 0 or —1, the upper bound on the number of conflicts is disabled.

Parameters budget (int) — the upper bound on the number of propagations.

Example:

>>> from pysat.solvers import MinisatGH

>>> from pysat.examples.genhard import Parity

>>>

>>> cnf = Parity(size=10) # too hard for a SAT solver

>>> m = MinisatGH (bootstrap_with=cnf.clauses)

>>>

>>> m.prop_budget (100000) # doing at most 100000 propagations
>>> print (m.solve_limited()) # making a limited oracle call
None

>>> m.delete ()

propagate (assumptions=[], phase_saving=0)
The method takes a list of assumption literals and does unit propagation of each of these literals consecu-
tively. A Boolean status is returned followed by a list of assigned (assumed and also propagated) literals.
The status is True if no conflict arised during propagation. Otherwise, the status is False. Additionally,
a user may specify an optional argument phase_saving (0 by default) to enable MiniSat-like phase
saving.

Note that only MiniSat-like solvers support this functionality (e.g. Cadical and Lingeling do not
support it).

Parameters
* assumptions (iterable (int)) - alist of assumption literals.
* phase_saving (int) — enable phase saving (can be 0, 1, and 2).
Return type tuple(bool, list(int))

Usage example:

>>> from pysat.solvers import Glucose3
>>> from pysat.card import =«

(continues on next page)
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>>>

>>> cnf = CardEnc.atmost (lits=range(l, 6), bound=1l, encoding=EncType.pairwise)
>>> g = Glucose3 (bootstrap_with=cnf.clauses)
>>>

>>> g.propagate (assumptions=[1])

(True, [1, -2, -3, -4, =-51])

>>>

>>> g.add_clause([2])

>>> g.propagate (assumptions=[1])

(False, [])

>>>

>>> g.delete ()

set_phases (literals=[])

The method takes a list of literals as an argument and sets phases (or MiniSat-like polarities) of the corre-
sponding variables respecting the literals. For example, if a given list of literalsis [1, —-513], the solver
will try to set variable x; to true while setting x513 to false.

Note that once these preferences are specified, MinisatGH and Lingeling will always respect
them when branching on these variables. However, solvers Glucose3, Glucose4, MapleChrono,
MapleCM, Maplesat,Minisat22, and Minicard can redefine the preferences in any of the follow-
ing SAT calls due to the phase saving heuristic.

Also note that Cadical does not support this functionality.
Parameters literals (iterable (int))— alist of literals.

Usage example:

>>> from pysat.solvers import Glucose3
>>>

>>> g = Glucose3 (bootstrap_with=[[1, 2]1)
>>> # the formula has 3 models: [-1, 2], [1, -2], [1, 2]
>>>

>>> g.set_phases (literals=[1, 2])

>>> g.solve()

True

>>> g.get_model ()

(1, 2]

>>>

>>> g.delete()

solve (assumptions=[])

This method is used to check satisfiability of a CNF formula given to the solver (see methods
add_clause () and append_formula ()). Unless interrupted with SIGINT, the method returns ei-
ther True or False.

Incremental SAT calls can be made with the use of assumption literals. (Note that the assumptions
argument is optional and disabled by default.)

Parameters assumptions (iterable (int)) - alist of assumption literals.
Return type Boolean or None.

Example:

>>> from pysat.solvers import Solver
>>> 5 = Solver (bootstrap_with=[[-1, 2], [-2, 31)

(continues on next page)
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>>> s.solve ()

True

>>> s.solve (assumptions=[1, -3])
False

>>> s.delete()

solve_limited (assumptions=[])
This method is used to check satisfiability of a CNF formula given to the solver (see methods
add_clause () and append_formula ()), taking into account the upper bounds on the number
of conflicts (see conf_budget ()) and the number of propagations (see prop_budget ()). If the
number of conflicts or propagations is set to be larger than O then the following SAT call done with
solve_limited () will not exceed these values, i.e. it will be incomplete. Otherwise, such a call
will be identical to solve ().

As soon as the given upper bound on the number of conflicts or propagations is reached, the SAT call is
dropped returning None, i.e. unknown. None can also be returned if the call is interrupted by SIGINT.
Otherwise, the method returns True or False.

Note that only MiniSat-like solvers support this functionality (e.g. Cadical and Lingeling do not
support it).

Incremental SAT calls can be made with the use of assumption literals. (Note that the assumptions
argument is optional and disabled by default.)

Parameters assumptions (iterable (int)) - alist of assumption literals.
Return type Boolean or None.

Doing limited SAT calls can be of help if it is known that complete SAT calls are too expensive. For
instance, it can be useful when minimizing unsatisfiable cores in MaxSAT (see pysat .examples.
RC2.minimize_core () also shown below).

Also and besides supporting deterministic interruption based on conf_ budget () and/or
prop_budget (), limited SAT calls support deterministic and non-deterministic interruption from
inside a Python script. See the interrupt () and clear_interrupt () methods for details.

Usage example:

# assume that a SAT oracle is set up to contain an unsatisfiable
# formula, and its core 1s stored in variable "core"
oracle.conf_budget (1000) # getting at most 1000 conflicts be call

i=20
while 1 < len(core):
to_test = core[:1] + core[(i + 1):]

# doing a limited call

if oracle.solve_limited(assumptions=to_test) == False:
core = to_test

else: # True or #unknownx*
i+=1

time ()
Get the time spent when doing the last SAT call. Note that the time is measured only if the use_timer
argument was previously set to True when creating the solver (see Solver for details).

Return type float.

Example usage:
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>>> from pysat.solvers import Solver

>>> from pysat.examples.genhard import PHP

>>>

>>> cnf = PHP (nof_holes=10)

>>> with Solver (bootstrap_with=cnf.clauses, use_timer=True) as s:
print (s.solve())

False

C.. print (' s'.format (s.time ()))

150.16s

time_accum/()
Get the time spent for doing all SAT calls accumulated. Note that the time is measured only if the
use_timer argument was previously set to True when creating the solver (see Solver for details).

Return type float.

Example usage:

>>> from pysat.solvers import Solver

>>> from pysat.examples.genhard import PHP

>>>

>>> cnf = PHP (nof_holes=10)

>>> with Solver (bootstrap_with=cnf.clauses, use_timer=True) as s:
print (s.solve (assumptions=[1]))

False
.. print (' s'.format (s.time ()))
1.76s
print (s.solve (assumptions=[-1]))
False
.. print (' s'.format (s.time ()))
113.58s
.. print (' s'.format (s.time_accum()))
115.34s

class pysat.solvers.SolverNames
This class serves to determine the solver requested by a user given a string name. This allows for using several
possible names for specifying a solver.

cadical = ('cd', 'cdl', 'cadical')

glucose3 = ('g3', 'g30', 'glucose3', 'glucose30'")
glucosed ('gd', 'g4l', 'glucosed', 'glucosedl')
lingeling = ('lgl', 'lingeling')

maplechrono = ('mcb', 'chrono', 'maplechrono')
maplecm = ('mcm', 'maplecm')

maplesat ('mpl', 'maple', 'maplesat')

minicard = ('mc', 'mcard', 'minicard')

minisat22 = ('m22', 'msat22', 'minisat22'")
minisatgh = ('mgh', 'msat-gh', 'minisat-gh')

As a result, in order to select Glucose3, a user can specify the solver’s name: either 'g3', 'g30",

'glucose3',or 'glucose30'. Note that the capitalized versions of these names are also allowed.
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1.2 Supplementary examples package

1.2.1 Fu&Malik MaxSAT algorithm (pysat .examples. fm)

List of classes

FM A non-incremental implementation of the FM
(Fu&Malik, or WMSU1) algorithm.

Module description

This module implements a variant of the seminal core-guided MaxSAT algorithm originally proposed by' and then
improved and modified further in>**>. Namely, the implementation follows the WMSUT1 variant® of the algorithm
extended to the case of weighted partial formulas.

The implementation can be used as an executable (the list of available command-line options can be shown using
fm.py -h) in the following way:

xzcat formula.wcnf.xz
wenf 3 6 4

10

2 0

30

-1 -2 0

-1 -3 0

-2 -3 0

[ N N i O ¥

fm.py -c cardn -s glucose3 -vv formula.wcnf.xz
cost: 1; core sz: 2

cost: 2; core sz: 3

OPTIMUM FOUND

2

-1 -2 30

oracle time: 0.0001

Q< 0 ®mQa »

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.fm import FM
>>> from pysat.formula import WCNF

>>>

>>> wcnf = WCNF (from_file='formula.wcnf.xz")

>>>

>>> fm = FM(wcnf, verbose=0)

>>> fm.compute () # set of hard clauses should be satisfiable
True

>>> print (fm.cost) # cost of MaxSAT solution should be 2

>>> 2

(continues on next page)

! Zhaohui Fu, Sharad Malik. On Solving the Partial MAX-SAT Problem. SAT 2006. pp. 252-265

2 Joao Marques-Silva, Jordi Planes. On Using Unsatisfiability for Solving Maximum Satisfiability. CoRR abs/0712.1097. 2007

3 Joao Marques-Silva, Vasco M. Manquinho. Towards More Effective Unsatisfiability-Based Maximum Satisfiability Algorithms. SAT 2008. pp.
225-230

4 Carlos Ansétegui, Maria Luisa Bonet, Jordi Levy. Solving (Weighted) Partial MaxSAT through Satisfiability Testing. SAT 2009. pp. 427-440

5 Vasco M. Manquinho, Joao Marques Silva, Jordi Planes. Algorithms for Weighted Boolean Optimization. SAT 2009. pp. 495-508
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>>> print (fm.model)

[711

72! 31

Module details

class examples. fm.FM (formula, enc=0, solver="m22', verbose=1)

A non-incremental implementation of the FM (Fu&Malik, or WMSU1) algorithm. The algorithm (see details
in’) is core-guided, i.e. it solves maximum satisfiability with a series of unsatisfiability oracle calls, each produc-
ing an unsatisfiable core. The clauses involved in an unsatisfiable core are relaxed and a new AtMost1 constraint
on the corresponding relaxation variables is added to the formula. The process gets a bit more sophisticated in
the case of weighted formulas because of the clause weight splitting technique.

The constructor of F14 objects receives a target WCNF MaxSAT formula, an identifier of the cardinality encoding
to use, a SAT solver name, and a verbosity level. Note that the algorithm uses the pairwise (see card.
EncType) cardinality encoding by default, while the default SAT solver is MiniSat22 (referred to as 'm22 "',
see SolverNames for details). The default verbosity level is 1.

Parameters
* formula (WCNF') — input MaxSAT formula
* enc (int) - cardinality encoding to use
¢ solver (str)—name of SAT solver
* verbose (int) — verbosity level

_compute ()
This method implements WMSUT algorithm. The method is essentially a loop, which at each iteration
calls the SAT oracle to decide whether the working formula is satisfiable. If it is, the method derives a
model (stored in variable self.model) and returns. Otherwise, a new unsatisfiable core of the formula
is extracted and processed (see t reat_core ()), and the algorithm proceeds.

compute ()
Compute a MaxSAT solution. First, the method checks whether or not the set of hard clauses is satisfiable.
If not, the method returns False. Otherwise, add soft clauses to the oracle and call the MaxSAT algorithm
(see _compute ()).

Note that the soft clauses are added to the oracles after being augmented with additional selector liter-
als. The selectors literals are then used as assumptions when calling the SAT oracle and are needed for
extracting unsatisfiable cores.

delete()
Explicit destructor of the internal SAT oracle.

init (with_soft=True)
The method for the SAT oracle initialization. Since the oracle is is used non-incrementally, it is reinitialized
at every iteration of the MaxSAT algorithm (see reinit ()). An input parameter with_soft (False
by default) regulates whether or not the formula’s soft clauses are copied to the oracle.

Parameters with_soft (bool) — copy formula’s soft clauses to the oracle or not

oracle_time ()
Method for calculating and reporting the total SAT solving time.

reinit ()
This method calls delete () and init () to reinitialize the internal SAT oracle. This is done at every
iteration of the MaxSAT algorithm.
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relax core()

Relax and bound the core.

After unsatisfiable core splitting, this method is called. If the core contains only one clause, i.e. this clause
cannot be satisfied together with the hard clauses of the formula, the formula gets augmented with the
negation of the clause (see remove_unit_core ()).

Otherwise (if the core contains more than one clause), every clause c of the core is relaxed. This means a
new relaxation literal is added to the clause, i.e. ¢ +— ¢V r, where r is a fresh (unused) relaxation variable.
After the clauses get relaxed, a new cardinality encoding is added to the formula enforcing the sum of the
new relaxation variables to be not greater than 1, > cep T < 1, where ¢ denotes the unsatisfiable core.

remove_unit_core ()

If an unsatisfiable core contains only one clause c, this method is invoked to add a bunch of new unit size
hard clauses. As a result, the SAT oracle gets unit clauses (—/) for all literals [ in clause c.

split_core (minw)

Split clauses in the core whenever necessary.

Given a list of soft clauses in an unsatisfiable core, the method is used for splitting clauses whose weights
are greater than the minimum weight of the core, i.e. the minw value computed in t reat_core (). Each
clause (¢V—s,w), s.t. w > minw and s is its selector literal, is split into clauses (1) clause (¢V —s, minw)
and (2) a residual clause (¢ V —s’, w — minw). Note that the residual clause has a fresh selector literal s’
different from s.

Parameters minw (int)— minimum weight of the core

treat_core()

Now that the previous SAT call returned UNSAT, a new unsatisfiable core should be extracted and relaxed.
Core extraction is done through a call to the pysat.solvers. Solver.get_core () method, which
returns a subset of the selector literals deemed responsible for unsatisfiability.

After the core is extracted, its minimum weight minw is computed, i.e. it is the minimum weight among
the weights of all soft clauses involved in the core (see’). Note that the cost of the MaxSAT solution is
incremented by minw.

Clauses that have weight larger than minw are split (see split_core ()). Afterwards, all clauses of the
unsatisfiable core are relaxed (see relax core ()).

1.2.2 Hard formula generator (pysat . examples.genhard)

List of classes

CB Mutilated chessboard principle (CB).

GT Generator of ordering (or greater than, GT) principle
formulas.

PAR Generator of the parity principle (PAR) formulas.

PHP Generator of k pigeonhole principle (k-PHP) formulas.
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Module description

This module is designed to provide a few examples illustrating how PySAT can be used for encoding practical problems
into CNF formulas. These include combinatorial principles that are widely studied from the propositional proof com-
plexity perspective. Namely, encodings for the following principles are implemented: pigeonhole principle (PHP)',
ordering (greater-than) principle (GT)?, mutilated chessboard principle (CB)?, and parity principle (PAR)*.

The module can be used as an executable (the list of available command-line options can be shown using genhard.
py -—h) in the following way

$ genhard.py -t php -n 3 -v

c PHP formula for 4 pigeons and 3 holes

c (pigeon, hole) pair: (1, 1); bool var: 1
c (pigeon, hole) pair: (1, 2); bool var: 2
c (pigeon, hole) pair: (1, 3); bool var: 3
c (pigeon, hole) pair: (2, 1); bool var: 4
c (pigeon, hole) pair: (2, 2); bool var: 5
c (pigeon, hole) pair: (2, 3); bool var: 6
c (pigeon, hole) pair: (3, 1); bool var: 7
c (pigeon, hole) pair: (3, 2); bool var: 8
c (pigeon, hole) pair: (3, 3); bool var: 9
c (pigeon, hole) pair: (4, 1); bool var: 10
c (pigeon, hole) pair: (4, 2); bool var: 11
c (pigeon, hole) pair: (4, 3); bool var: 12
p cnf 12 22

1230

4560

78 90

10 11 12 0

-1 -4 0

-1 -7 0

-1 -10 0

-4 -7 0

-4 -10 0

-7 =10 0

-2 =50

-2 -8 0

-2 =11 0

-5 -8 0

-5 -11 0

-8 -11 0

-3 -6 0

-3 -9 0

-3 -12 0

-6 -9 0

-6 =12 0

-9 -12 0

Alternatively, each of the considered problem encoders can be accessed with the use of the standard import interface
of Python, e.g.

>>> from pysat.examples.genhard import PHP
>>>

(continues on next page)

! Stephen A. Cook, Robert A. Reckhow. The Relative Efficiency of Propositional Proof Systems. J. Symb. Log. 44(1). 1979. pp. 36-50

2 Balakrishnan Krishnamurthy. Short Proofs for Tricky Formulas. Acta Informatica 22(3). 1985. pp. 253-275

3 Michael Alekhnovich. Mutilated Chessboard Problem Is Exponentially Hard For Resolution. Theor. Comput. Sci. 310(1-3). 2004. pp.
513-525

4 Mikl6s Ajtai. Parity And The Pigeonhole Principle. Feasible Mathematics. 1990. pp. 1-24
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>>> cnf = PHP (3)
>>> print (cnf.nv, len(cnf.clauses))
12 22

Given this example, observe that classes PHP, GT, CB, and PAR inherit from class pysat . formula. CNF and, thus,
their corresponding clauses can accessed through variable . clauses.

Module details

class examples.genhard.CB (size, exhaustive=False, topv=0, verb=False)
Mutilated chessboard principle (CB). Given an integer n, the principle states that it is impossible to cover a
chessboard of size 2n - 2n by domino tiles if two diagonally opposite corners of the chessboard are removed.

Note that the chessboard has 4n? — 2 cells. Introduce a Boolean variable z;; for i, j € [4n? — 2] s.t. cells i
and j are adjacent (no variables are introduced for pairs of non-adjacent cells). CB formulas comprise clauses
(1) (—xj; V ;) for every ¢, j # k meaning that no more than one adjacent cell can be paired with the current
one; and (2) (Vjeadqj(i)Zi;) Vi enforcing that every cell 7 should be paired with at least one adjacent cell.

Clearly, since the two diagonal corners are removed, the formula is unsatisfiable. Also note the following.
Assuming that the number of black cells is larger than the number of the white ones, CB formulas are unsatis-
fiable even if only a half of the formula is present, e.g. when AtMost1 constraints are formulated only for the
white cells while the AtLeast1 constraints are formulated only for the black cells. Depending on the value of
parameter exhaustive the encoder applies the complete or partial formulation of the problem.

Mutilated chessboard principle is known to be hard for resolution?.
Parameters
* size (int)— problem size (n)
* exhaustive (bool)— encode the problem exhaustively
* topv (int) — current top variable identifier
¢ verb (bool) — defines whether or not the encoder is verbose
Returns object of class pysat. formula.CNF.

class examples.genhard.GT (size, topv=0, verb=False)
Generator of ordering (or greater than, GT) principle formulas. Given an integer parameter n, the principle
states that any partial order on the set {1,2, ..., n} must have a maximal element.

Assume variable z;;, for i, j € [n],i # j, denotes the fact that ¢ > j. Clauses (—x;; V —xj;) and (-2 V 2, V
x;1;) ensure that the relation > is anti-symmetric and transitive. As a result, > is a partial order on [n]. The
additional requirement that each element ¢ has a successor in [n] \ {i} represented a clause (V ;x;x;;) makes the
formula unsatisfiable.

GT formulas were originally conjectured? to be hard for resolution. However,? proved the existence of a poly-
nomial size resolution refutation for GT formulas.

Parameters
* size (int) - number of elements (n)
* topv (int)— current top variable identifier
* verb (bool)— defines whether or not the encoder is verbose

Returns object of class pysat. formula.CNF.

5 Gunnar Stalmarck. Short Resolution Proofs for a Sequence of Tricky Formulas. Acta Informatica. 33(3). 1996. pp. 277-280
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class examples.genhard.PAR (size, topv=0, verb=False)
Generator of the parity principle (PAR) formulas. Given an integer parameter n, the principle states that no
graph on 2n + 1 nodes consists of a complete perfect matching.

The encoding of the parity principle uses (2"; 1) variables x;;,¢ # j. If variable x;; is true, then there is an

edge between nodes ¢ and j. The formula consists of the following clauses: (V;z;z;;) for every i € [2n + 1],
and (—a;; V —xy;) for all distinct ¢, j, k € [2n + 1].

The parity principle is known to be hard for resolution*.
Parameters
* size (int)— problem size (n)
* topv (int) — current top variable identifier
* verb (bool)— defines whether or not the encoder is verbose
Returns object of class pysat. formula.CNF.

class examples.genhard.PHP (nof_holes, kval=1, topv=0, verb=False)
Generator of k pigeonhole principle (k-PHP) formulas. Given integer parameters m and k, the k£ pigeonhole
principle states that if & - m + 1 pigeons are distributes by m holes, then at least one hole contains more than k
pigeons.

Note that if £ is 1, the principle degenerates to the formulation of the original pigeonhole principle stating that
m + 1 pigeons cannot be distributed by m holes.

Assume that a Boolean variable x;; encodes that pigeon ¢ resides in hole j. Then a PHP formula can be seen
as a conjunction: /\f:f“ AtLeast1(z;1, ..., Tim) A /\;7;1 AtMostk(x1;, ..., Tk.m+1,;). Here each AtLeastl
constraint forces every pigeon to be placed into at least one hole while each AtMostk constraint allows the
corresponding hole to have at most k& pigeons. The overall PHP formulas are unsatisfiable.

PHP formulas are well-known® to be hard for resolution.
Parameters
e nof_holes (int)— number of holes (n)
* kval (int)— multiplier k
* topv (int)— current top variable identifier
* verb (bool)— defines whether or not the encoder is verbose

Returns object of class pysat. formula.CNF.

1.2.3 Minimum/minimal hitting set solver (pysat .examples.hitman)

List of classes

Hitman A cardinality-/subset-minimal hitting set enumerator.

6 Armin Haken. The Intractability of Resolution. Theor. Comput. Sci. 39. 1985. pp. 297-308
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Module description

A SAT-based implementation of an implicit minimal hitting set' enumerator. The implementation is capable of com-
puting/enumerating cardinality- and subset-minimal hitting sets of a given set of sets. Cardinality-minimal hitting set
enumeration can be seen as ordered (sorted by size) subset-minimal hitting enumeration.

The minimal hitting set problem is trivially formulated as a MaxSAT formula in WCNEF, as follows. Assume F =
{e1,...,e,} to be a universe of elements. Also assume there are k sets to hit: s; = {e;1,...,¢e;;,} st. e;; € E.
Every sets; = {e; 1,...,€; j, } is translated into a hard clause (e; 1 V...V e; j,). This results in the set of hard clauses
having size k. The set of soft clauses comprises unit clauses of the form (—e;) s.t. e; € E, each having weight 1.

Taking into account this problem formulation as MaxSAT, ordered hitting enumeration is done with the use of the
state-of-the-art MaxSAT solver called RC2>** while unordered hitting set enumeration is done through the minimal
correction subset (MCS) enumeration, e.g. using the LBX-> or MCS1 s-like® MCS enumerators.

Hitman supports hitting set enumeration in the implicit manner, i.e. when sets to hit can be added on the fly as well
as hitting sets can be blocked on demand.

An example usage of Hitman through the Python import interface is shown below. Here we target unordered
subset-minimal hitting set enumeration.

>>> from pysat.examples.hitman import Hitman
>>>
>>> = Hitman (solver='m22', htype='lbx")
adding sets to hit

chit ([1, 2, 31)

chit ([1, 47)

chit ([5, 6, 71)

S =2

>>>
>>>
>>>

e o g

>>>
>>>
>>>
(1,
>>>
>>> h.block ([1, 5])
>>>

>>> h.get ()

[2, 4, 5]

>>>

>>> h.delete ()

oy

.get ()

ul

Enumerating cardinality-minimal hitting sets can be done as follows:

>>> from pysat.examples.hitman import Hitman
>>>
>>> sets = [[1, 2, 31, [1, 41, [5, 6, 711
>>> with Hitman (bootstrap_with=sets, htype='sorted') as hitman:
for hs in hitman.enumerate () :
print (hs)

(1, 51

(1, 71

(continues on next page)

! Erick Moreno-Centeno, Richard M. Karp. The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Applica-
tion to Multigenome Alignment. Operations Research 61(2). 2013. pp. 453-468

2 Anténio Morgado, Carmine Dodaro, Joao Marques-Silva. Core-Guided MaxSAT with Soft Cardinality Constraints. CP 2014. pp. 564-573

3 Anténio Morgado, Alexey Ignatiev, Joao Marques-Silva. MSCG: Robust Core-Guided MaxSAT Solving. JSAT 9. 2014. pp. 129-134

4 Alexey Ignatiev, Anténio Morgado, Joao Marques-Silva. RC2: a Python-based MaxSAT Solver. MaxSAT Evaluation 2018. p. 22

5 Carlos Mencfa, Alessandro Previti, Joao Marques-Silva. Literal-Based MCS Extraction. IJCAL 2015. pp. 1973-1979

6 Joao Marques-Silva, Federico Heras, Mikolds Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. 1JCAL
2013. pp. 615-622
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Finally, implicit hitting set enumeration can be used in practical problem solving. As an example, let us show the basic
flow of a MaxHS-like’ algorithm for MaxSAT:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from pysat.examples.hitman import Hitman
from pysat.solvers import Solver

hitman = Hitman (htype='sorted")
oracle = Solver ()

here we assume that the SAT oracle

is initialized with a MaxSAT formula,

whose soft clauses are extended with

selector literals stored in "sels"

while True:

hs = hitman.get () # hitting the set of unsatisfiable cores
ts set (sels) .difference (set (hs)) # soft clauses to try

#
#
#
#

if oracle.solve (assumptions=ts) :
print ('s OPTIMUM FOUND')
print ('o', len(hs))
break

else:
core = oracle.get_core()
hitman.hit (core)

Module details

class examples.hitman.Hitman (bootstrap_with=[], solver="g3’, htype='sorted’)

A cardinality-/subset-minimal hitting set enumerator. The enumerator can be set up to use either a MaxSAT
solver RC2 or an MCS enumerator (either LBX or MCS1s). In the former case, the hitting sets enumerated are
ordered by size (smallest size hitting sets are computed first), i.e. sorfed. In the latter case, subset-minimal
hitting are enumerated in an arbitrary order, i.e. unsorted.

This is handled with the use of parameter ht ype, whichis settobe 'sorted' by default. The MaxSAT-based
enumerator can be chosen by setting ht ype to one of the following values: 'maxsat', 'mxsat',or 'rc2'.
Alternatively, by setting itto 'mcs ' or '1bx "', a user can enforce using the ZBX MCS enumerator. If htype
issetto 'mcsls', the MCSIs enumerator is used.

In either case, an underlying problem solver can use a SAT oracle specified as an input parameter solver. The
default SAT solver is Glucose3 (specified as g3, see SolverNames for details).

Objects of class 71 tman can be bootstrapped with an iterable of iterables, e.g. a list of lists. This is handled us-
ing the boot strap_with parameter. Each set to hit can comprise elements of any type, e.g. integers, strings
or objects of any Python class, as well as their combinations. The bootstrapping phase is done in init ().

Parameters

* bootstrap_with (iterable (iterable (ob3j)))— input set of sets to hit

7 Jessica Davies, Fahiem Bacchus. Solving MAXSAT by Solving a Sequence of Simpler SAT Instances. CP 2011. pp. 225-239
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e solver (str)—name of SAT solver
* htype (str)— enumerator type

block (to_block)
The method serves for imposing a constraint forbidding the hitting set solver to compute a given hitting
set. Each set to block is encoded as a hard clause in the MaxSAT problem formulation, which is then added
to the underlying oracle.

Parameters to_block (iterable (obj))—aset to block

delete ()
Explicit destructor of the internal hitting set oracle.

enumerate ()
The method can be used as a simple iterator computing and blocking the hitting sets on the fly. It essentially
calls get () followed by b1ock (). Each hitting set is reported as a list of objects in the original problem
domain, i.e. it is mapped back from the solutions over Boolean variables computed by the underlying
oracle.

Return type list(obj)

get ()
This method computes and returns a hitting set. The hitting set is obtained using the underlying oracle
operating the MaxSAT problem formulation. The computed solution is mapped back to objects of the
problem domain.

Return type list(obj)

hit (fo_hit)
This method adds a new set to hit to the hitting set solver. This is done by translating the input iterable of
objects into a list of Boolean variables in the MaxSAT problem formulation.

Parameters to_hit (iterable (obj))—anew set to hit

init (bootstrap_with)
This method serves for initializing the hitting set solver with a given list of sets to hit. Concretely, the
hitting set problem is encoded into partial MaxSAT as outlined above, which is then fed either to a MaxSAT
solver or an MCS enumerator.

Parameters bootstrap_with (iterable (iterable (obj)))—input set of sets to hit

1.2.4 LBX-like MCS enumerator (pysat .examples. 1bx)

List of classes

LBX LBX-like algorithm for computing MCSes.
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Module description

This module implements a prototype of the LBX algorithm for the computation of a minimal correction subset (MCS)
and/or MCS enumeration. The LBX abbreviation stands for literal-based MCS extraction algorithm, which was pro-
posed in'. Note that this prototype does not follow the original low-level implementation of the corresponding MCS
extractor available online (compared to our prototype, the low-level implementation has a number of additional heuris-

tics used). However, it implements the LBX algorithm for partial MaxSAT formulas, as described in'.

The implementation can be used as an executable (the list of available command-line options can be shown using

lbx.py -h)in the following way:

xzcat formula.wcnf.xz
wenf 3 6 4

10

20

30

-1 -2 0

-1 -3 0

-2 -3 0

[ N N i O ¥

1lbx.py -d -e all -s glucose3 -vv formula.wcnf.xz
MCS: 1 3 0

cost: 2

MCS: 2 3 0

cost: 2

MCS: 1 2 0

cost: 2

oracle time: 0.0002

Q0o »

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.lbx import LBX

>>> from pysat.formula import WCNF

>>>

>>> wcenf = WCNF (from_file='formula.wcnf.xz'")

>>>

>>> 1bx = LBX(wcnf, use_cld=True, solver_name='g3')
>>> for mcs in lbx.enumerate() :

lbx.block (mcs)

C. print (mcs)

[1, 3]
(2, 3]
(1, 2]

Module details

class examples. lbx.LBX (formula, use_cld=False, solver_name="m22’, use_timer=~False)

LBX-like algorithm for computing MCSes. Given an unsatisfiable partial CNF formula, i.e. formula in the
WCNF format, this class can be used to compute a given number of MCSes of the formula. The implementation
follows the LBX algorithm description in'. It can use any SAT solver available in PySAT. Additionally, the
“clause D heuristic can be used when enumerating MCSes.

The default SAT solver to use is m22 (see SolverNames). The “clause D” heuristic is disabled by default, i.e.
use_cldis set to False. Internal SAT solver’s timer is also disabled by default, i.e. use_timerisFalse.

Parameters

I Carlos Mencia, Alessandro Previti, Joao Marques-Silva. Literal-Based MCS Extraction. IJCAI 2015. pp. 1973-1979
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* formula (WCNF) — unsatisfiable partial CNF formula

e use_cld (bool)— whether or not to use “clause D”

* solver_name (str)— SAT oracle name

e use_timer (bool)— whether or not to use SAT solver’s timer

_compute ()
The main method of the class, which computes an MCS given its over-approximation. The over-
approximation is defined by a model for the hard part of the formula obtained in compute ().

The method is essentially a simple loop going over all literals unsatisfied by the previous model, i.e. the
literals of se1f. setd and checking which literals can be satisfied. This process can be seen a refinement
of the over-approximation of the MCS. The algorithm follows the pseudo-code of the LBX algorithm
presented in'.

Additionally, if Z.BX was constructed with the requirement to make “clause D” calls, the method calls
do_cld _check () at every iteration of the loop using the literals of self . setd not yet checked, as
the contents of “clause D”.

_filter_ satisfied (update_setd=False)
This method extracts a model provided by the previous call to a SAT oracle and iterates over all soft clauses
checking if each of is satisfied by the model. Satisfied clauses are marked accordingly while the literals of
the unsatisfied clauses are kept in a list called setd, which is then used to refine the correction set (see
_compute (),and do_cld check ()).

Optional Boolean parameter update_setd enforces the method to update variable self.setd. If
this parameter is set to False, the method only updates the list of satisfied clauses, which is an under-
approximation of a maximal satisfiable subset (MSS).

Parameters update_setd (bool)— whether or not to update setd

_map_extlit (])
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in in-
troducing new variables clashing with the previously used clause selectors. The method makes sure no
clash occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced
auxiliary variables (see add_clause ()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input
literal.

Parameters 1 (int) - literal to map
Return type int

_satisfied (cl, model)
Given a clause (as an iterable of integers) and an assignment (as a list of integers), this method checks
whether or not the assignment satisfies the clause. This is done by a simple clause traversal. The method
is invoked from _filter _satisfied().

Parameters
e cl (iterable (int))—aclause to check
* model (list (int))— an assignment
Return type bool

add_clause (clause, soft=False)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to
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be specified as an argument of the constructor of L.BX, adding clauses may be helpful when enumerating
MCSes of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional Boolean parameter soft can
be set to True meaning the the clause being added is soft (note that parameter soft is set to False by
default).

Parameters
e clause (iterable (int))—aclause to add
¢ soft (bool)— whether or not the clause is soft

block (mcs)
Block a (previously computed) MCS. The MCS should be given as an iterable of integers. Note that this
method is not automatically invoked from enumerate () because a user may want to block some of the
MCSes conditionally depending on the needs. For example, one may want to compute disjoint MCSes
only in which case this standard blocking is not appropriate.

Parameters mcs (iterable (int))—an MCS to block

compute ()
Compute and return one solution. This method checks whether the hard part of the formula is satisfiable,
i.e. an MCS can be extracted. If the formula is satisfiable, the model computed by the SAT call is used
as an over-approximation of the MCS in the method _ compute () invoked here, which implements the
LBX algorithm.

An MCS is reported as a list of integers, each representing a soft clause index (the smallest index is 1).
Return type list(int)

delete ()
Explicit destructor of the internal SAT oracle.

do_cld_check (cld)
Do the “clause D” check. This method receives a list of literals, which serves a “clause D2, and checks
whether the formula conjoined with D is satisfiable.

If clause D cannot be satisfied together with the formula, then negations of all of its literals are backbones
of the formula and the LBX algorithm can stop. Otherwise, the literals satisfied by the new model refine
the MCS further.

Every time the method is called, a new fresh selector variable s is introduced, which augments the current
clause D. The SAT oracle then checks if clause (DV—s) can be satisfied together with the internal formula.
The D clause is then disabled by adding a hard clause (—s).

Parameters cld (I1ist (int)) - clause D to check

enumerate ()
This method iterates through MCSes enumerating them until the formula has no more MCSes. The method
iteratively invokes compute (). Note that the method does not block the MCSes computed - this should
be explicitly done by a user.

oracle_time ()
Report the total SAT solving time.

2 Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. 1JCAI
2013. pp. 615-622
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1.2.5 LSU algorithm for MaxSAT (pysat .examples.lsu)

List of classes

LSU Linear SAT-UNSAT algorithm for MaxSAT'.
LSUPlus LSU-like algorithm extended for WCNFPIus formulas
(using Minicard).

Module description

The module implements a prototype of the known LSU/LSUS, e.g. linear (search) SAT-UNSAT, algorithm for MaxSAT,
e.g. see'. The implementation is improved by the use of the iterative totalizer encoding’. The encoding is used in an
incremental fashion, i.e. it is created once and reused as many times as the number of iterations the algorithm makes.

The implementation can be used as an executable (the list of available command-line options can be shown using
lsu.py -—h) in the following way:

xzcat formula.wcnf.xz
wenf 3 6 4

10

20

30

-1 -2 0

-1 -3 0

-2 -3 0

[ N N i ol /2

lsu.py -s glucose3 -m -v formula.wcnf.xz
formula: 3 vars, 3 hard, 3 soft

2

OPTIMUM FOUND

-1 -2 30

oracle time: 0.0000

Q< n 0 Q

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.lsu import LSU
>>> from pysat.formula import WCNF

>>>

>>> wcnf = WCNF (from_file='formula.wcnf.xz")

>>>

>>> 1lsu = LSU(wcnf, verbose=0)

>>> lsu.solve () # set of hard clauses should be satisfiable
True

>>> print (lsu.cost) # cost of MaxSAT solution should be 2
>>> 2

>>> print (lsu.model)
[71/ 72! 31

! Anténio Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, Joao Marques-Silva. Iterative and core-guided MaxSAT solving: A survey
and assessment. Constraints 18(4). 2013. pp. 478-534
2 Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, Inés Lynce. Incremental Cardinality Constraints for MaxSAT. CP 2014. pp. 531-548
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Module details

class examples.lsu.LSU (formula, solver='g4’', verbose=0)
Linear SAT-UNSAT algorithm for MaxSAT'. The algorithm can be seen as a series of satisfiability oracle calls
refining an upper bound on the MaxSAT cost, followed by one unsatisfiability call, which stops the algorithm.
The implementation encodes the sum of all selector literals using the iterative totalizer encoding®. At every
iteration, the upper bound on the cost is reduced and enforced by adding the corresponding unit size clause to
the working formula. No clauses are removed during the execution of the algorithm. As a result, the SAT oracle
is used incrementally.

Warning: At this point, LSU supports only unweighted problems.

The constructor receives an input WCNF formula, a name of the SAT solver to use (see SolverNames for
details), and an integer verbosity level.

Parameters
* formula (WCNF') — input MaxSAT formula
e solver (str)-name of SAT solver
* verbose (int) — verbosity level

_assert_1t (cost)
The method enforces an upper bound on the cost of the MaxSAT solution. This is done by encoding the
sum of all soft clause selectors with the use the iterative totalizer encoding, i.e. TTotalizer. Note that
the sum is created once, at the beginning. Each of the following calls to this method only enforces the
upper bound on the created sum by adding the corresponding unit size clause. Each such clause is added
on the fly with no restart of the underlying SAT oracle.

Parameters cost (int) — the cost of the next MaxSAT solution is enforced to be lower than
this current cost

_get_model_cost (formula, model)
Given a WCNF formula and a model, the method computes the MaxSAT cost of the model, i.e. the sum
of weights of soft clauses that are unsatisfied by the model.

Parameters
e formula (WCNF) — an input MaxSAT formula
* model (1ist (int))— asatisfying assignment
Return type int

_init (formula)
SAT oracle initialization. The method creates a new SAT oracle and feeds it with the formula’s hard
clauses. Afterwards, all soft clauses of the formula are augmented with selector literals and also added to
the solver. The list of all introduced selectors is stored in variable self.sels.

Parameters formula (WCNF) — input MaxSAT formula

clear_interrupt ()
Clears an interruption.

delete ()
Explicit destructor of the internal SAT oracle and the TTotalizer object.

found_optimum ()
Checks if the optimum solution was found in a prior call to solve ().
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Return type bool

get_model ()
This method returns a model obtained during a prior satisfiability oracle call made in solve ().

Return type list(int)

interrupt ()
Interrupt the current execution of LSU’s solve () method. Can be used to enforce time limits
using timer objects. The interrupt must be cleared before running the LSU algorithm again (see
clear_interrupt ()).

oracle _time ()
Method for calculating and reporting the total SAT solving time.

solve ()
Computes a solution to the MaxSAT problem. The method implements the LSU/LSUS algorithm, i.e. it
represents a loop, each iteration of which calls a SAT oracle on the working MaxSAT formula and refines
the upper bound on the MaxSAT cost until the formula becomes unsatisfiable.

Returns True if the hard part of the MaxSAT formula is satisfiable, i.e. if there is a MaxSAT solution, and
False otherwise.

Return type bool

class examples.lsu.LSUPlus (formula, verbose=0)
LSU-like algorithm extended for WCNFP 1 us formulas (using Minicard).

Parameters
* formula (WCNFPI1us)— input MaxSAT formula in WCNF+ format
* verbose (int) — verbosity level

_assert_1lt (cost)
Overrides _assert_It of LSU in order to use Minicard’s native support for cardinality constraints

Parameters cost (int) — the cost of the next MaxSAT solution is enforced to be lower than
this current cost

1.2.6 CLD-like MCS enumerator (pysat .examples.mcsls)

List of classes

MCS1s Algorithm BLS for computing MCSes, augmented with
“clause D calls.

Module description

This module implements a prototype of a BLS- and CLD-like algorithm for the computation of a minimal correction
subset (MCS) and/or MCS enumeration. More concretely, the implementation follows the basic linear search (BLS)
for MCS exctraction augmented with clause D (CLD) oracle calls. As a result, the algorithm is not an implementation
of the BLS or CLD algorithms as described in' but a mixture of both. Note that the corresponding original low-level
implementations of both can be found online.

! Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. 1JCAI
2013. pp. 615-622
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The implementation can be used as an executable (the list of available command-line options can be shown using
mcsls.py —h)in the following way:

xzcat formula.wcnf.xz
wenf 3 6 4

10

20

30

-1 -2 0

-1 -3 0

-2 -3 0

[N N N L i o Y2

mcsls.py —-d —e all -s glucose3 -vv formula.wcnf.xz
MCS: 1 3 0

cost: 2

MCS: 2 3 0

cost: 2

MCS: 1 2 0

cost: 2

oracle time: 0.0002

Q000 »

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.mcsls import MCSls

>>> from pysat.formula import WCNF

>>>

>>> wcnf = WCNF (from_file='formula.wcnf.xz")

>>>

>>> mcsls = MCSls (wcnf, use_cld=True, solver_name='g3")
>>> for mcs in mcsls.enumerate() :

mcsls.block (mcs)

C. print (mcs)

(1, 3]
(2, 3]
(1, 2]

Module details

class examples.mcsls.MCSls (formula, use_cld=False, solver_name='m22', use_timer=False)

Algorithm BLS for computing MCSes, augmented with “clause D” calls. Given an unsatisfiable partial CNF
formula, i.e. formula in the WCNF format, this class can be used to compute a given number of MCSes of the
formula. The implementation follows the description of the basic linear search (BLS) algorithm description
in'. It can use any SAT solver available in PySAT. Additionally, the “clause D” heuristic can be used when
enumerating MCSes.

The default SAT solver to use ism22 (see SolverNames). The “clause D” heuristic is disabled by default, i.e.
use_cldis setto False. Internal SAT solver’s timer is also disabled by default, i.e. use_timerisFalse.

Parameters
» formula (WCNF) — unsatisfiable partial CNF formula
e use_cld (bool)— whether or not to use “clause D”
¢ solver_name (str)— SAT oracle name

* use_timer (bool)— whether or not to use SAT solver’s timer
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_compute ()
The main method of the class, which computes an MCS given its over-approximation. The over-
approximation is defined by a model for the hard part of the formula obtained in _overapprox ()
(the corresponding oracle is made in compute ()).

The method is essentially a simple loop going over all literals unsatisfied by the previous model, i.e. the
literals of se1f. setd and checking which literals can be satisfied. This process can be seen a refinement
of the over-approximation of the MCS. The algorithm follows the pseudo-code of the BLS algorithm
presented in'.

Additionally, if MCS1s was constructed with the requirement to make “clause D” calls, the method calls
do_cld _check () at every iteration of the loop using the literals of self . setd not yet checked, as
the contents of “clause D”.

_map_extlit (])
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in in-
troducing new variables clashing with the previously used clause selectors. The method makes sure no
clash occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced
auxiliary variables (see add_clause ()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input
literal.

Parameters 1 (int) - literal to map
Return type int

_overapprox ()
The method extracts a model corresponding to an over-approximation of an MCS, i.e. it is the model of
the hard part of the formula (the corresponding oracle call is made in compute ()).

Here, the set of selectors is divided into two parts: self.ss_assumps, which is an under-approximation
of an MSS (maximal satisfiable subset) and self.setd, which is an over-approximation of the target
MCS. Both will be further refined in _ compute ().

add_clause (clause, soft=False)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to
be specified as an argument of the constructor of MCS 1 s, adding clauses may be helpful when enumerating
MCSes of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional Boolean parameter soft can
be set to True meaning the the clause being added is soft (note that parameter soft is set to False by
default).

Parameters
e clause (iterable (int))—aclause to add
¢ soft (bool)— whether or not the clause is soft

block (mcs)
Block a (previously computed) MCS. The MCS should be given as an iterable of integers. Note that this
method is not automatically invoked from enumerate () because a user may want to block some of the
MCSes conditionally depending on the needs. For example, one may want to compute disjoint MCSes
only in which case this standard blocking is not appropriate.

Parameters mcs (iterable (int))—an MCS to block

compute ()
Compute and return one solution. This method checks whether the hard part of the formula is satisfiable,
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i.e. an MCS can be extracted. If the formula is satisfiable, the model computed by the SAT call is used
as an over-approximation of the MCS in the method _ compute () invoked here, which implements the
BLS algorithm augmented with CLD oracle calls.

An MCS is reported as a list of integers, each representing a soft clause index (the smallest index is 1).
Return type list(int)

delete()
Explicit destructor of the internal SAT oracle.

do_cld_check (cld)
Do the “clause D” check. This method receives a list of literals, which serves a “clause D!, and checks
whether the formula conjoined with D is satisfiable.

If clause D cannot be satisfied together with the formula, then negations of all of its literals are backbones
of the formula and the MCSlIs algorithm can stop. Otherwise, the literals satisfied by the new model refine
the MCS further.

Every time the method is called, a new fresh selector variable s is introduced, which augments the current
clause D. The SAT oracle then checks if clause (DV—s) can be satisfied together with the internal formula.
The D clause is then disabled by adding a hard clause (—s).

Parameters cld (1ist (int)) - clause D to check

enumerate ()
This method iterates through MCSes enumerating them until the formula has no more MCSes. The method
iteratively invokes compute (). Note that the method does not block the MCSes computed - this should
be explicitly done by a user.

oracle time ()
Report the total SAT solving time.

1.2.7 An iterative model enumerator (pysat . examples.models)

List of classes

enumerate _models Enumeration procedure.

Module description

The module implements a simple iterative enumeration of a given number of models of CNF" or CNFP 1us formula. In
the latter case, only Minicard can be used as a SAT solver. The module aims at illustrating how one can work with
model computation and enumeration.

The implementation facilitates the simplest use of a SAT oracle from the command line. If one deals with the enu-
meration task from a Python script, it is more convenient to exploit the internal model enumeration of the pysat.
solvers module. Concretely, see pysat.solvers.Solver.enum _models ().

$ cat formula.cnf
p cnf 4 4

-1 2
-1 3
-2 4
3 -4

O O O O

(continues on next page)
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(continued from previous page)

$ models.py —-e all -s glucose3 formula.cnf
v -1 -2 +3 -4 0

v +1 +2 -3 +4 0

c nof models: 2

c accum time: 0.00s

c mean time: 0.00s

Module details

examples.models.enumerate_models (formula, to_enum, solver)
Enumeration procedure. It represents a loop iterating over satisfying assignment for a given formula until either
all or a given number of them is enumerated.

Parameters
* formula (CNFP1lus) - input WCNF formula
* to_enum(int or 'all')-number of models to compute

¢ solver (str)—-name of SAT solver

1.2.8 A deletion-based MUS extractor (pysat . examples.musx)

List of classes

MUSX MUS eXtractor using the deletion-based algorithm.

Module description

This module implements a deletion-based algorithm' for extracting a minimal unsatisfiable subset (MUS) of a given
(unsafistiable) CNF formula. This simplistic implementation can deal with plain and partial CNF formulas, e.g.
formulas in the DIMACS CNF and WCNF formats.

The following extraction procedure is implemented:

# oracle: SAT solver (initialized)
# assump: full set of assumptions

i=20

while i < len (assump) :

to_test = assump[:1] + assump[ (i + 1):]

if oracle.solve (assumptions=to_test):
i+=1

else:

assump = to_test

return assump

The implementation can be used as an executable (the list of available command-line options can be shown using
musx.py —h)in the following way:

! Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications. ISMVL 2010. pp. 9-14
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cat formula.wcnf
wenf 3 6 4

10

2 0

30

-1 -2 0

-1 -3 0

-2 -3 0

N N N i o 3

musx.py —s glucose3 -vv formula.wcnf
MUS approx: 1 2 0

testing clid: 0 -> sat (keeping 0)
testing clid: 1 -> sat (keeping 1)
nof soft: 3

MUS size: 2

120

oracle time: 0.0001

Q< Q00 »

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.musx import MUSX
>>> from pysat.formula import WCNF

>>>

>>> wcnf = WCNF (from_file='formula.wcnf')

>>>

>>> musx = MUSX (wcnf, verbosity=0)

>>> musx.compute () # compute a minimally unsatisfiable set of clauses
(1, 2]

Note that the implementation is able to compute only one MUS (MUS enumeration is not supported).

Module details

class examples.musx.MUSX (formula, solver="m22’', verbosity=1)
MUS eXtractor using the deletion-based algorithm. The algorithm is described in' (also see the module descrip-
tion above). Essentially, the algorithm can be seen as an iterative process, which tries to remove one soft clause
at a time and check whether the remaining set of soft clauses is still unsatisfiable together with the hard clauses.

The constructor of MUSX objects receives a target WCNF' formula, a SAT solver name, and a verbosity level.
Note that the default SAT solver is MiniSat22 (referred to as 'm22', see SolverNames for details). The
default verbosity level is 1.

Parameters
* formula (WCNF') — input WCNF formula
¢ solver (str)-name of SAT solver
* verbosity (int) — verbosity level

_compute (approx)
Deletion-based MUS extraction. Given an over-approximation of an MUS, i.e. an unsatisfiable core
previously returned by a SAT oracle, the method represents a loop, which at each iteration removes a
clause from the core and checks whether the remaining clauses of the approximation are unsatisfiable
together with the hard clauses.

Soft clauses are (de)activated using the standard MiniSat-like assumptions interface”. Each soft clause c is

2 Niklas Eén, Niklas Sorensson. Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4). 2003. pp. 543-560
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augmented with a selector literal s, e.g. (¢) + (¢V —s). As aresult, clause ¢ can be activated by assuming
literal s. The over-approximation provided as an input is specified as a list of selector literals for clauses
in the unsatisfiable core.

Parameters approx (1ist (int))— an over-approximation of an MUS

Note that the method does not return. Instead, after its execution, the input over-approximation is refined
and contains an MUS.

compute ()
This is the main method of the MUSX class. It computes a set of soft clauses belonging to an MUS of the
input formula. First, the method checks whether the formula is satisfiable. If it is, nothing else is done.
Otherwise, an unsatisfiable core of the formula is extracted, which is later used as an over-approximation
of an MUS refined in _ compute ().

delete ()
Explicit destructor of the internal SAT oracle.

oracle time ()
Method for calculating and reporting the total SAT solving time.

1.2.9 RC2 MaxSAT solver (pysat .examples.rc2)

List of classes

RC2 Implementation of the basic RC2 algorithm.
RC2Stratified RC2 augmented with BLO and stratification techniques.

Module description

An implementation of the RC2 algorithm for solving maximum satisfiability. RC2 stands for relaxable cardinality
constraints (alternatively, soft cardinality constraints) and represents an improved version of the OLLITI algorithm,
which was described in' and” and originally implemented in the MSCG MaxSAT solver.

Initially, this solver was supposed to serve as an example of a possible PySAT usage illustrating how a state-of-the-art
MaxSAT algorithm could be implemented in Python and still be efficient. It participated in the MaxSAT Evaluations
2018 and 2019 where, surprisingly, it was ranked first in two complete categories: unweighted and weighted. A brief
solver description can be found in®. A more detailed solver description can be found in*.

The file implements two classes: RC2 and RC2Stratified. The former class is the basic implementation of the
algorithm, which can be applied to a MaxSAT formula in the WCNF format. The latter class additionally implements
Boolean lexicographic optimization (BLO)> and stratification® on top of RC2.

The implementation can be used as an executable (the list of available command-line options can be shown using
rc2.py -—h) in the following way:

$ xzcat formula.wcnf.xz
p wenf 3 6 4

(continues on next page)

! Anténio Morgado, Carmine Dodaro, Joao Marques-Silva. Core-Guided MaxSAT with Soft Cardinality Constraints. CP 2014. pp. 564-573

2 Anténio Morgado, Alexey Ignatiev, Joao Marques-Silva. MSCG: Robust Core-Guided MaxSAT Solving. JSAT 9. 2014. pp. 129-134

3 Alexey Ignatiev, Anténio Morgado, Joao Marques-Silva. RC2: A Python-based MaxSAT Solver. MaxSAT Evaluation 2018. p. 22

4 Alexey Ignatiev, Anténio Morgado, Joao Marques-Silva. RC2: An Efficient MaxSAT Solver. MaxSAT Evaluation 2018. JSAT 11. 2019. pp.
53-64

3 Joao Marques-Silva, Josep Argelich, Ana Graga, Inés Lynce. Boolean lexicographic optimization: algorithms & applications. Ann. Math.
Artif. Intell. 62(3-4). 2011. pp. 317-343

6 Carlos Ansétegui, Maria Luisa Bonet, Joel Gabas, Jordi Levy. Improving WPM2 for (Weighted) Partial MaxSAT. CP 2013. pp. 117-132
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4 -1 -2 0

4 -1 -3 0

4 -2 -3 0

$ rc2.py -vv formula.wcnf.xz

c formula: 3 vars, 3 hard, 3 soft
c cost: 1; core sz: 2; soft sz: 2
c cost: 2; core sz: 2; soft sz: 1
s OPTIMUM FOUND

o 2

v -1 -2 3

c oracle time: 0.0001

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.rc2 import RC2

>>> from pysat.formula import WCNF

>>>

>>> wcnf = WCNF (from_file='formula.wcnf.xz")

>>>

>>> with RC2 (wcnf) as rc2:

for m in rc2.enumerate():

C. print ('model has cost '.format (m, rc2.cost))
model

[-1, -2, 3] has cost 2
model [1, -2, —-3] has cost 2
model [-1, 2, —-3] has cost 2
model [-1, -2, -3] has cost 3

As can be seen in the example above, the solver can be instructed either to compute one MaxSAT solution of an input
formula, or to enumerate a given number (or all) of its top MaxSAT solutions.

Module details

class examples.rc2.RC2 (formula, solver="g3’, adapt=False, exhaust=False, incr=False, minz=False,

trim=0, verbose=0)
Implementation of the basic RC2 algorithm. Given a (weighted) (partial) CNF formula, i.e. formula in the

WCNF format, this class can be used to compute a given number of MaxSAT solutions for the input formula.
RC2 roughly follows the implementation of algorithm OLLITI'? of MSCG and applies a few heuristics on top
of it. These include

* unsatisfiable core exhaustion (see method exhaust_core ()),
* unsatisfiable core reduction (see method minimize core()),
e intrinsic AtMostl constraints (see method adapt_aml ()).

RC2 can use any SAT solver available in PySAT. The default SAT solver to use is g3 (see SolverNames).
Additionally, if Glucose is chosen, the incr parameter controls whether to use the incremental mode of Glu-
cose’ (turned off by default). Boolean parameters adapt, exhaust, and minz control whether or to apply
detection and adaptation of intrinsic AtMostl constraints, core exhaustion, and core reduction. Unsatisfiable
cores can be trimmed if the t rim parameter is set to a non-zero integer. Finally, verbosity level can be set using
the verbose parameter.

7 Gilles Audemard, Jean-Marie Lagniez, Laurent Simon. Improving Glucose for Incremental SAT Solving with Assumptions: Application to
MUS Extraction. SAT 2013. pp. 309-317
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Parameters
* formula (WCNF) — (weighted) (partial) CNF formula
* solver (str)— SAT oracle name
* adapt (bool) —detect and adapt intrinsic AtMost1 constraints
¢ exhaust (bool) — do core exhaustion
* incr (bool)— use incremental mode of Glucose
* minz (bool) - do heuristic core reduction
* trim (int)—do core trimming at most this number of times
* verbose (int) — verbosity level

_map_extlit (])
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in in-
troducing new variables clashing with the previously used clause selectors. The method makes sure no
clash occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced
auxiliary variables (see add_clause ()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input
literal.

Parameters 1 (int) - literal to map
Return type int

adapt_aml ()
Detect and adapt intrinsic AtMostl constraints. Assume there is a subset of soft clauses S’ C S s.t.
> ecs ¢ < 1,i.e. at most one of the clauses of S’ can be satisfied.

Each AtMostl relationship between the soft clauses can be detected in the following way. The method
traverses all soft clauses of the formula one by one, sets one respective selector literal to true and checks
whether some other soft clauses are forced to be false. This is checked by testing if selectors for other
soft clauses are unit-propagated to be false. Note that this method for detection of AtMost1 constraints is
incomplete, because in general unit propagation does not suffice to test whether or not 7 A l; = —l;.

Each intrinsic AtMost1 constraint detected this way is handled by calling process_aml ().

add_clause (clause, weight=None)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to
be specified as an argument of the constructor of RC2, adding clauses may be helpful when enumerating
MaxSAT solutions of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional integer parameter weight can
be set to meaning the the clause being added is soft having the corresponding weight (note that parameter
weight is set to None by default meaning that the clause is hard).

Parameters
* clause (iterable (int))—aclause to add

* weight (int) — weight of the clause (if any)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>

>>> wcnf = WCNFE ()

(continues on next page)
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>>> wcnf.append([-1, -21) # adding hard clauses

>>> wcnf.append([-1, -3])

>>>

>>> wcnf.append([1], weight=1) # adding soft clauses
>>> wcnf.append([2], weight=1)

>>> wcnf.append([3], weight=1)

>>>
>>> with RC2 (wcnf) as rc2:
Ce rc2.compute () # solving the MaxSAT problem
-1, 2, 31
.. print (rc2.cost)
1
rc2.add_clause([-2, -3]) # adding one more hard clause
. rc2.compute () # computing another model
(-1, -2, 3]
.. print (rc2.cost)
2

compute ()

This method can be used for computing one MaxSAT solution, i.e. for computing an assignment satisfying
all hard clauses of the input formula and maximizing the sum of weights of satisfied soft clauses. It is a
wrapper for the internal compute_ () method, which does the job, followed by the model extraction.

Note that the method returns None if no MaxSAT model exists. The method can be called multiple times,
each being followed by blocking the last model. This way one can enumerate top-k MaxSAT solutions
(this can also be done by calling enumerate ()).

Returns a MaxSAT model

Return type list(int)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>

>>> rc2 = RC2(WCNF()) # passing an empty WCNF () formula

()
>>> rc2.add_clause([-1, —-2])
>>> rc2.add_clause([-1, -31)
>>> rc2.add_clause ([-2, —31)

>>>
>>> rc2.add_clause([1l], weight=1)
>>> rc2.add_clause([2], weight=1)
>>> rc2.add_clause ([3], weight=1)
>>>

>>> model = rc2.compute ()

>>> print (model)

(-1, -2, 3]

>>> print (rc2.cost)

2

>>> rc2.delete()

compute_ ()

Main core-guided loop, which iteratively calls a SAT oracle, extracts a new unsatisfiable core and pro-
cesses it. The loop finishes as soon as a satisfiable formula is obtained. If specified in the command line,
the method additionally calls adapt_aml () to detect and adapt intrinsic AtMostl constraints before
executing the loop.

Return type bool
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create_sum (bound=1)
Create a totalizer object encoding a cardinality constraint on the new list of relaxation literals obtained in
process_sels () and process_sums (). The clauses encoding the sum of the relaxation literals are
added to the SAT oracle. The sum of the totalizer object is encoded up to the value of the input parameter
bound, which is set to 1 by default.

Parameters bound (int) — right-hand side for the sum to be created
Return type ITotalizer

Note that if Minicard is used as a SAT oracle, native cardinality constraints are used instead of
ITotalizer.

delete ()
Explicit destructor of the internal SAT oracle and all the totalizer objects creating during the solving
process.

enumerate (block_mcses=False)
Enumerate top MaxSAT solutions (from best to worst). The method works as a generator, which iteratively
calls compute () to compute a MaxSAT model, blocks it internally and returns it.

Returns a MaxSAT model

Return type list(int)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>

>>> rc2 = RC2(WCNF()) # passing an empty WCNF () formula

()
>>> rc2.add_clause([-1, -21) # adding clauses "on the fly"
>>> rc2.add_clause([-1, -31)
>>> rc2.add_clause ([-2, —31)

>>>
>>> rc2.add_clause([1l], weight=1)
>>> rc2.add_clause([2], weight=1)
>>> rc2.add_clause ([3], weight=1)
>>>

>>> for model in rc2.enumerate () :
R print (model, rc2.cost)
(-1, -2, 31 2

(1, -2, -31 2

(-1, 2, -3] 2

(-1, -2, -31 3

>>> rc2.delete()

exhaust_core (10bj)
Exhaust core by increasing its bound as much as possible. Core exhaustion was originally referred to as

cover optimization in°.

Given a totalizer object t obj representing a sum of some relaxation variables r € R that augment soft
clauses C,, the idea is to increase the right-hand side of the sum (which is equal to 1 by default) as much
as possible, reaching a value & s.t. formula H A C A (3, . < k) is still unsatisfiable while increasing
it further makes the formula satisfiable (here H denotes the hard part of the formula).

The rationale is that calling an oracle incrementally on a series of slightly modified formulas focusing only
on the recently computed unsatisfiable core and disregarding the rest of the formula may be practically
effective.

filter_assumps ()
Filter out unnecessary selectors and sums from the list of assumption literals. The corresponding values
are also removed from the dictionaries of bounds and weights.
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Note that assumptions marked as garbage are collected in the core processing methods, ie. in
process_core (), process_sels (),and process_sums ().

get_core ()

Extract unsatisfiable core. The result of the procedure is stored in variable self . core. If necessary, core
trimming and also heuristic core reduction is applied depending on the command-line options. A minimum
weight of the core is computed and stored in self .minw. Finally, the core is divided into two parts:

1. clause selectors (self.core_sels),

2. sum assumptions (self.core_sums).

init (formula, incr=False)

Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when
constructing an object of class RC2. Given an input WCNFE formula, the method bootstraps the oracle
with its hard clauses. It also augments the soft clauses with “fresh” selectors and adds them to the oracle
afterwards.

Optional input parameter incr (False by default) regulates whether or not Glucose’s incremental mode’
is turned on.

Parameters
* formula (WCNF') — input formula

* incr (bool) — apply incremental mode of Glucose

minimize_ core ()

Reduce a previously extracted core and compute an over-approximation of an MUS. This is done using the
simple deletion-based MUS extraction algorithm.

The idea is to try to deactivate soft clauses of the unsatisfiable core one by one while checking if the
remaining soft clauses together with the hard part of the formula are unsatisfiable. Clauses that are nec-
essary for preserving unsatisfiability comprise an MUS of the input formula (it is contained in the given
unsatisfiable core) and are reported as a result of the procedure.

During this core minimization procedure, all SAT calls are dropped after obtaining 1000 conflicts.

oracle_time ()

Report the total SAT solving time.

process_aml (aml)

Process an AtMostl relation detected by adapt_am1 (). Note that given a set of soft clauses S’ at most
one of which can be satisfied, one can immediately conclude that the formula has cost at least |S'| — 1
(assuming unweighted MaxSAT). Furthermore, it is safe to replace all clauses of S’ with a single soft

clause ) g C.

Here, input parameter am1 plays the role of subset S’ mentioned above. The procedure bumps the MaxSAT
costby self.minw x (len(aml) - 1).

All soft clauses involved in am1 are replaced by a single soft clause, which is a disjunction of the selectors
of clauses in am1. The weight of the new soft clause is set to self.minw.

Parameters aml (1ist (int))—alist of selectors connected by an AtMost1 constraint

process_core ()

The method deals with a core found previously in get_core (). Clause selectors self.core_sels
and sum assumptions involved in the core are treated separately of each other. This is handled by calling
methods process_sels () and process_sums (), respectively. Whenever necessary, both methods
relax the core literals, which is followed by creating a new totalizer object encoding the sum of the new
relaxation variables. The totalizer object can be “exhausted” depending on the option.
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process_sels ()
Process soft clause selectors participating in a new core. The negation —s of each selector literal s partici-
pating in the unsatisfiable core is added to the list of relaxation literals, which will be later used to create a
new totalizer objectin create_sum/().

If the weight associated with a selector is equal to the minimal weight of the core, e.g. self.minw, the
selector is marked as garbage and will be removed in filter assumps (). Otherwise, the clause is
split as described in'.

process_sums ()
Process cardinality sums participating in a new core. Whenever necessary, some of the sum assumptions
are removed or split (depending on the value of self.minw). Deleted sums are marked as garbage and
are dealt within filter assumps ().

In some cases, the process involves updating the right-hand sides of the existing cardinality sums (see the
call to update_sum ()). The overall procedure is detailed in!.

set_bound (tobj, rhs)
Given a totalizer sum and its right-hand side to be enforced, the method creates a new sum assumption
literal, which will be used in the following SAT oracle calls.

Parameters
e tobj (ITotalizer) - totalizer sum
e rhs (int) - right-hand side

trim_core()
This method trims a previously extracted unsatisfiable core at most a given number of times. If a fixed
point is reached before that, the method returns.

update_sum (assump)
The method is used to increase the bound for a given totalizer sum. The totalizer object is identified by the
input parameter assump, which is an assumption literal associated with the totalizer object.

The method increases the bound for the totalizer sum, which involves adding the corresponding new
clauses to the internal SAT oracle.

The method returns the totalizer object followed by the new bound obtained.
Parameters assump (int)— assumption literal associated with the sum
Return type ITotalizer,int

Note that if Minicard is used as a SAT oracle, native cardinality constraints are used instead of
ITotalizer.

class examples.rc2.RC2Stratified (formula, solver='g3',  adapt=False,  exhaust=False,

incr=False, minz=False, trim=0, verbose=0)
RC2 augmented with BLO and stratification techniques. Although class RC2 can deal with weighted formulas,

there are situations when it is necessary to apply additional heuristics to improve the performance of the solver
on weighted MaxSAT formulas. This class extends capabilities of RC2 with two heuristics, namely

1. Boolean lexicographic optimization (BLO)?
2. stratification®

There is no way to enable only one of them — both heuristics are applied at the same time. Except for the
aforementioned additional techniques, every other component of the solver remains as in the base class RC2.
Therefore, a user is referred to the documentation of RC2 for details.

activate_clauses (beg)
This method is used for activating the clauses that belong to optimization levels up to the newly computed
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level. It also reactivates previously deactivated clauses (see process_sels () and process_sums ()
for details).

compute ()
This method solves the MaxSAT problem iteratively. Each optimization level is tackled the standard
way, i.e. by calling compute_ (). A new level is started by calling next_level () and finished
by calling finish level (). Each new optimization level activates more soft clauses by invoking
activate_clauses ().

finish level ()
This method does postprocessing of the current optimization level after it is solved. This includes harden-
ing some of the soft clauses (depending on their remaining weights) and also garbage collection.

init_wstr()
Compute and initialize optimization levels for BLO and stratification. This method is invoked once, from
the constructor of an object of RC2Stratified. Given the weights of the soft clauses, the method
divides the MaxSAT problem into several optimization levels.

next_level ()
Compute the next optimization level (starting from the current one). The procedure represents a loop, each
iteration of which checks whether or not one of the conditions holds:

* partial BLO condition
* stratification condition
If any of these holds, the loop stops.

process_aml (aml)
Due to the solving process involving multiple optimization levels to be treated individually, new soft
clauses for the detected intrinsic AtMostl constraints should be remembered. The method is a slightly
modified version of the base method RC2. process_ami () taking care of this.

process_sels ()
A redefined version of RC2. process_sels (). The only modification affects the clauses whose weight
after splitting becomes less than the weight of the current optimization level. Such clauses are deactivated
and to be reactivated at a later stage.

process_sums ()
A redefined version of RC2. process_sums (). The only modification affects the clauses whose weight
after splitting becomes less than the weight of the current optimization level. Such clauses are deactivated
and to be reactivated at a later stage.
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