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1 Introduction

We developed improved versions of sls-mcs and
sls-1su, two solvers that integrate SAT-based
techniques in a Stochastic Local Search (SLS)
solver for MaxSAT. In these solvers, the control of
the solving process changes from SAT-based pro-
cedures to stochastic procedures and vice-versa.
At each step, each procedure tries to build upon
the information received from the other, instead of
being independent procedures. The idea is to use
the SLS solver as the main procedure and, occa-
sionally, use an unsatisfiability-based algorithm to
correct the SLS current (unsatisfiable) assignment
into a satisfiable one, and use a procedure based
on Minimal Correction Subset (MCS) enumera-
tion or on the Linear Sat-Unsat (LSU) algorithm
to improve the current solution. We submitted
new versions of sls-mcs and sls-1su for the un-
weighted incomplete MaxSAT track, and two new
versions of sls-mcs for the weighted incomplete
MaxSAT track.

2  Using SAT Techniques in

Local Search

One of the shortcomings of SLS algorithms is
that these solvers have difficulties in dealing with
highly constrained formulas. Therefore, it might
be the case that the SLS algorithm is unable to
satisfy the set of hard clauses or gets stuck in some
local minima. In these cases, using SAT-based
techniques to find a satisfiable assignment would
be beneficial.

2.1 Assignment Correction

Consider the case when the SLS algorithm is un-
able to change from an unsatisfiable assignment v
into a better assignment. Our solver performs a
correction to v in order to guide the SLS algorithm
to the feasible region of the search space. First, we
start by building a set of assumption literals cor-

responding to the assignment v. Next, a SAT call
on the set of hard clauses, ¢y, is made. Clearly, if
v is not feasible, then this call returns UNSAT and
returns an unsatisfiable core. The assumption lit-
erals that occur in such an unsatisfiable core are
removed from the set of assumptions, and a new
SAT call is made. The same procedure is repeated
until a satisfiable assignment is found.

A conflict limit is defined for the correction pro-
cedure. If the conflict budget is not enough to
find a satisfiable assignment, then our algorithm
applies a similar procedure with a more aggressive
strategy where at each iteration 50% of the liter-
als in the set of assumptions are removed. Since
the correction procedure only depends on the hard
clauses, there is no guarantee regarding its quality.
As a result, we also apply a SAT-based improve-
ment procedure.

2.2 Assignment Improvement

Given a MaxSAT instance ¢, a set of assump-
tions A, a satisfiable assignment v, and conflict
budget, the goal of this assignment improvement
algorithm is to find a better quality solution for ¢
through an MCS enumeration procedure.

The algorithm starts by building a working for-
mula from the set of hard clauses ¢, and the set of
assumptions A. Next, the algorithm iterates over
all MCSes of ¢, constrained to the set of assump-
tions A and returns the best assignment found.
Each time a new MCS is found, a blocking clause
is added to prevent the enumeration of the same
MCS later on. The algorithm returns the best so-
lution found before the conflict budget runs out.
Note that the set of literals A restricts the MCS
enumeration procedure. This results in a localized
MCS enumeration.

Many different improvement procedures can be
devised, including the usage of complete methods.
For example, an alternative is to replace the MCS
enumeration algorithm by a call to a Linear Sat-



Unsat algorithm (LSU). The call to the LSU algo-
rithm is also limited to a number of conflicts, and
all literals in A are forced to be satisfied. Hence,
the LSU call is also restricted to a localized region
of the search space.

3 Incomplete Track

We developed the solvers sls-mcs and sls-1lsu,
that integrate an SLS algorithm with the as-
signment correction and assignment improvement
procedures [I], which we submitted to MaxSAT
Evaluation 2019. As SATLike [3], an SLS algo-
rithm, was one of the best performing solvers in
the incomplete solver track in the MaxSAT Eval-
uation 2018, we used SATLike in our implemen-
tation [I]. We developed and submitted improved
versions of sls-mcs and sls-1su. The main dif-
ference to the versions proposed in [I] and sub-
mitted to MaxSAT Evaluation 2019 is in the first
call to the assignment correction algorithm. If no
satisfiable assignment was yet found by the SLS
algorithm, then the set of assumptions A is empty
in the first SAT call.

3.1 Unweighted Instances

Two solvers were submitted for the unweighted
incomplete track: sls-mcs and sls-1lsu. In
sls-mcs, the SATLike SO]VGIE is extended with
the assignment correction algorithm and the as-
signment improvement algorithm based on MCS
enumeration. The difference from sls-mcs to
sls-1su is on the assignment improvement algo-
rithm. In sls-1su, the linear sat-unsat assign-
ment improvement algorithm is used.

Both sls-mcs and sls-1su use the Glucose
SAT solver (version 4.1) on the assignment cor-
rection procedure. Moreover, the CLD [4] algo-
rithm is used as the MCS algorithm in sls-mcs.
The linear sat-unsat algorithm used in sls-1su is
an adapted version of the one available at the
open-wbo open source MaxSAT solver. The con-
flict limits of the correction and the improvement
algorithms were set to 10°. In both sls-mcs and
sls-1su, the assignment correction/improvement
algorithm is called when SATlike has reached half
of the maximum number of iterations without im-
provement. In such a case, the correction algo-
rithm is called if the current assignment v does
not satisfy all hard clauses, otherwise the improve-
ment algorithm is directly called with approxi-
mately half of the literals in the current assign-
ment v as assumptions. These assumption literals
are randomly chosen from v.

1The source code of SATLike is publicly available at the
2018 MaxSAT evaluation https://maxsat-evaluations.
github.io/2018/descriptions.html

3.2 Weighted Instances

Two versions of the solver were submitted for
the weighted incomplete track: sls-mcs and
sls-mcs2. In both versions, the stratified CLD al-
gorithm [5] is used as the MCS algorithm. Unlike
sls-mcs, sls-mcs2 does not consider the assump-
tions A as hard clauses in the MCS enumeration
procedure.
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