TT-Open—-WBO—-Inc—-20:
an Anytime MaxSAT Solver Entering MSE’20

Alexander Nadel
Email: alexander.nadel @cs.tau.ac.il

Abstract—This document describes the solver
TT-Open-WBO-Inc-20, submitted to the four incomplete
tracks of MaxSAT Evaluation 2020. TT-Open-WBO-Inc-20 is
the 2020 version of our solver TT-Open-WBO-Inc [5], which
came in first at both the weighted, incomplete categories at
MaxSAT Evaluation 2019. TT-Open-WBO-Inc-20 has the
following two major new features as compared to the previous
version: 1) We now support unweighted anytime MaxSAT. We
apply the Mrs. Beaver algorithm [3], enhanced by several
heuristics from the WMB algorithm [4]; 2) We have integrated
into TT-Open-WBO-Inc-20 our new Polosat algorithm for
solving the problem of generic optimization in SAT [6].

I. INTRODUCTION

In this document, we assume that a MaxSAT instance
comprises a set of hard satisfiable clauses H and a target
bit-vector (target) T = {tn,tn_1,...,t1}, where each target
bit t; is a Boolean variable associated with a strictly positive
integer weight w;. The weight of a variable assignment p is
O(T, ) = Y1, pu(t;) x w;, that is, the overall weight of T7s
bits, satisfied by u. Given a MaxSAT instance, a MaxSAT
solver is expected to return a model having the minimum
possible weight.

Below, we briefly document: 1) Our new Polosat al-
gorithm for the OptSAT problem of optimizing a generic
Pseudo-Boolean function in SAT. Polosat is applied
in both the weighted and unweighted components of
TT-Open-WBO-Inc-20; 2) The weighted component of
TT-Open-WBO-Inc-20; 3) The unweighted component of
TT-Open-WBO-Inc-20.

Although we did our best to document our solver as
precisely as possible, inevitably, we had to omit some details
due to space restrictions. OptSAT, Polosat and the weighted
component of our solver are described in full detail in [6].

II. THE Polosat ALGORITHM FOR GENERIC
OPTIMIZATION IN SAT (OPTSAT)

Recall that a Pseudo-Boolean (PB) function is a function
that maps every full assignment to a real number.

We now state the OptSAT problem. Given a satisfiable
formula F'(V') in CNF and an objective Pseudo-Boolean (PB)
function ¥, OptSAT returns a model u to F, such that for
every model p’ to F, it holds that W (u) < W(u'). OptSAT can
be thought of as a generalization of MaxSAT, which supports
arbitrary PB functions, whereas MaxSAT is restricted to linear
PB functions.

In this document, we assume that the objective function
¥ is strictly monotone in a set of observable variables.

More specifically, let Obs C V be a set of observables
and U: [0, l]lvl — R be a PB function. Then: 1) ¥ is
restrictable to Obs, iff for every two assignments 6 and A,
such that 6(v) = A(v) for every v € Obs, it holds that
U(0) = ¥(A); 2) U is strictly monotone in observables Obs,
iff U is restrictable to Obs and for every assignment 6 and
every variable v € Obs, such that §(v) = 1, it holds that
T(O7) < T(h).

Note that the objective function O(T,p) in MaxSAT is
strictly monotone in the target bits. First, O(T, u) depends
only on the target bits. Second, when one of the target bits
decreases, O(T, u1) decreases too, hence O(T, u). Hence, an
OptSAT algorithm can be applied to solve MaxSAT.

Below, we present our anytime Polosat algorithm for
solving OptSAT. It can be used incrementally under assump-
tions, similarly to modern SAT solvers. Our algorithm is
incomplete; it works until a fixed-point, but does not guarantee
that the eventual solution is optimal. In this document, we
present the strictly monotone version of Polosat. As we
shall see, to solve MaxSAT, we integrate Polosat into
higher-level MaxSAT algorithms (rather than applying solely
Polosat).

Fixing the polarity of a variable v to a Boolean value o
during SAT solver’s invocation means assigning v the value
o, whenever v is chosen by the solver’s decision heuristic.
Intuitively, Polosat carries out a purely SAT-based local
search algorithm, based on polarity-fixing.

Polosat is shown in Alg. 1. It receives three parameters:
1) A satisfiable CNF formula F' (if the invocation is incremen-
tal, assume that F' contains all the clauses, provided by the
user so far); 2) A (possibly empty) set of assumptions Asmp.
The assumptions are guaranteed to hold for one particular
invocation of the algorithm; 3) The observables Obs; 4) The
objective PB function to minimize ¥: [0, l]Wl — R.

The algorithm maintains an instance of an incremental SAT
solver throughout its execution and the best model so far u.
Polosat starts with initializing x4 with a model by invoking
the SAT solver (line 3). Then, it operates in iterations, where
each iteration is called an epoch (lines 5 to 16). Each epoch
tries to improve p. An epoch is good if it manages to improve
1, otherwise it is bad. Our incomplete algorithm finishes
whenever a bad epoch is completed.

Each epoch tries to improve the best model so far y in a loop
(lines 8 to 16) by looking for a better solution near ;+ when,
for each loop iteration, one of the variables is forced to flip its
value. In addition, the observables are always fixed to 0. The



loop inside each epoch goes over a set of literals B, initialized
by all the observable variables assigned to 1 by u (line 6).
For each variable v, Polosat tries to find a model near p
with v flipped. This is carried out by fixing the polarities of
all the variables, except for the observables, to their values in
w (line 10), followed by a SAT invocation with —v as a hard
assumption (line 11). If the problem is satisfiable and a model
o better than p if found, then: 1) p is updated to o, 2) the
epoch is marked as good. In addition, any observable assigned
to 0 in any model is removed from B.

Algorithm 1 Polosat
1: function SOLVE(CNF F'; Literals Asmp; Variables Obs;
v: 0,1V 5 R)
Require: F' is satisfiable and ¥ is strictly monotone in Obs
2: Fix the polarities of the observables Obs to 0

3: 1= SAT(Asmp) > p: the best model so far

4: is_good_epoch =1

5: while is_good_epoch do > One loop is an epoch

6: B:={v:v € Obs,uv) =1}

7: is_good_epoch :== 0

8: while B is not empty do

9: v := B.front(); B.dequeue()

10: Fix the polarities of the observables Obs to 0
and all the other variables (that is, V' \ Obs) to u

11: o = SAT(Asmp U {—v})

12: if SAT then > Satisfiable

13: if U(o) < U(u) then

14: = o > Update the best model so far

15: is_good_epoch := 1 > Good epoch!

16: B:={v:veB,ov) =1}

III. THE WEIGHTED COMPONENT

We have integrated Polosat into the Bounded Multilevel
Optimization (BMO)-based anytime MaxSAT algorithm [2],
which we call BMO-based Clustering (BC), implemented
already in [2], [5].

BC [2] clusters all the target bits to disjoint classes based
on their weight. That is, all the targets of the same weight w
belong to the same class. Then, the algorithm sorts the classes
according to their weight and goes over them one-by-one
starting with the class associated with the highest weight. BC
tries to falsify as many target bits in each class as possible with
incremental SAT invocations. After BC completes processing
one class, it fixes the overall number of falsified target bits in
that class.

Our implementation simply replaces every SAT invocation
with a Polosat invocation in BC with the target T as the
observables and O(T', 1) as the objective function. However,
there are several subtleties: a) We exclude from the set of
observables the bits which belong to the fixed classes; b) We
sort the observables by their weight in decreasing order; ¢) We
randomly shuffle the observables within each class before
every Polosat invocation to diversify Polosat’s execution.

A. Polosat Enhancements

We modified Polosat to keep track of the number of
Models Per Second (MPS) throughout its execution starting
immediately after the initial SAT invocation. MPS is updated
and tested after each SAT invocation. If MPS is lower than
1, the current invocation of Polosat is terminated, and the
high-level BC algorithm falls backs to invoking a plain SAT
solver instead of Polosat for the rest of its execution. Falling
back to SAT makes sense, since SAT/Polosat queries tend
to become more difficult as the algorithm advances towards
the ideal, hence MPS is unlikely to increase.

Furthermore, we use the conflict threshold of 1000 for all
the SAT invocations inside Polosat, except for the first one.

The two enhancements above are detailed in [6]. On top
of that, we have modified Polosat to include an additional
SAT invocation before the one which checks if the current
observable v can be flipped (line 11). Let R be the subset
of the literals in p which correspond to all the observables
that appear before v in Obs (where the polarity of each such
literal is determined by p). We add R to the assumptions for
our additional SAT invocation. We proceed with the original
SAT invocation at line 11, only if no model better than u
was found by the first invocation. Otherwise, we proceed to
the next loop iteration. This adjustment essentially combines
Polosat and WMB.

IV. THE UNWEIGHTED COMPONENT

The unweighted component uses the Mrs. Beaver al-
gorithm [3], enhanced by the following two heuristics from
Sect. 4.1 in [4]: global stopping condition for OBV-BS and
size-based switching to complete part.

We have integrated Polosat into our algorithm by simply
replacing SAT invocations with Polosat invocations. We
apply all the Polosat enhancements from Sect. III-A in our
unweighted component, where the adapted strategy is used
with the threshold of 2 (rather than 1).

In addition, we use chronological backtracking [7] (with the
configuration {T = 100, C = 0}), which we have implemented
in the underlying SAT solver Glucose 4.1 [1]. Furthermore,
we take advantage of the TORC polarity selection heuristic [4]
throughout the algorithm’s execution.

REFERENCES

[1] G. Audemard and L. Simon. On the glucose SAT solver. Int. J. Artif.
Intell. Tools, 27(1):1840001:1-1840001:25, 2018.

[2] S.Joshi, P. Kumar, S. Rao, and R. Martins. Open-wbo-inc: Approximation
strategies for incomplete weighted maxsat. J. Satisf. Boolean Model.
Comput., 11(1):73-97, 2019.

[3] A. Nadel. Solving maxsat with bit-vector optimization. In SAT 2018,
pages 54-72, 2018.

[4] A. Nadel. Anytime weighted maxsat with improved polarity selection
and bit-vector optimization. In FMCAD 2019, pages 193-202, 2019.

[S] A. Nadel. TT-Open-WBO-Inc: Tuning Polarity and Variable Selection
for Anytime SAT-based Optimization. Department of Computer Science
Report Series B, Finland, 2019. Department of Computer Science, Uni-
versity of Helsinki.

[6] A. Nadel. On optimizing a generic function in SAT. 2020. Under
submission.

[7]1 A. Nadel and V. Ryvchin. Chronological backtracking. In SAT 2018,
pages 111-121, 2018.



	Introduction
	The Polosat Algorithm for Generic Optimization in SAT (OptSAT)
	The Weighted Component
	Polosat Enhancements

	The Unweighted Component
	References

