
SMAX – Implementing a Robust MaxSAT Interface
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

I. INTRODUCTION

The main aim of the MaxSAT solver SMAX is to showcase
how a MaxSAT solver can be used as a library. Consequently,
it can be understood as a prototype implementation which does
not focus on solver performance as the highest priority. The
solver has to following properties:

• implement a C++interface as a library
• be easily consumable, by being available as MIT license
• implement in a robust, modular way
• support reproducible partial solving, based on solving

steps.
The implementation allows to provide the solver as a shared
library, which opens the door for integration into tools that
require a Python or Java interface. Consequently, solver fail-
ures and exceptions are caught by the library itself, and errors
are handled accordingly. All code is version controlled with
git submodules, to allow reproduction of solver binaries or
libraries. Continuous testing is used to make sure that updated
code can be used as solving backend via a shared library,
and furthermore checks for errors via valgrind. Finally, a
Maxsat fuzzer1 is used to test whether random input behaves
as expected.

II. SOLVER INTERNALS

The idea behind the solver is open to switch solving
backends. The initial implementation follows an approach that
makes software licenses simple, by focussing on software that
is available as MIT license.

A. Solver Interface

The solver implements a C++interface to a MaxSAT engine.
The interface is sketched in Figure 1. The interface aims at
allowing failure inside the solver, as well as providing an
assignment to start from and a number of steps to perform,
so that partial and reproducible solver calls are possible.
Discussions on the interface are welcome.

B. MaxSAT Solvers

The solver uses OPEN-WBO [1] as the current MaxSAT
backend, which is an open source MaxSAT solver that supports
several MaxSAT algorithms and SAT solvers [2], [3], [4]. To
make sure all used code is available under MIT license, the
GLUCOSE 4.1 code of the OPEN-WBO package had to be
removed.

1The fuzzer is available at https://github.com/conp-solutions/maxsat-fuzzer.
git.

The used OPEN-WBO version is an older version, as initial
changes have been added early and rebasing them to a current
version has not been considered yet. Consequently, eventual
bug fixes might be currently missing in SMAX. Furthermore,
additional patches had to be added to OPEN-WBO to allow
pragmatic access to internal data structures like the found
bound or the last model to be handled internally. Some part
of SMAX basically provides an input parser and an output
generator based on the available data structures of OPEN-
WBO, with the additional abstraction layer in between.

We currently use a single, predefined, configuration of
OPEN-WBO to simplify the interface to the MaxSAT library.

C. SAT Solvers

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [2], [5]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solvers.

MERGESAT [4] is a CDCL solver based on the SAT com-
petition winner of 2018, MAPLELCMDISTCHRONOBT [6].
While being based on MINISAT 2.2, MERGESAT aims at
providing recent solving techniques while being compatible
with the solver API of MINISAT 2.2. Among others, MERGE-
SAT implements partial backtracking, an efficient version of
learned clause minimization, as well as inprocessing based
on subsumption and self-subsuming resolution. Compared to
MAPLELCMDISTCHRONOBT, the incremental search feature
has to been enabled again.

D. Competition Tracks

The solver has been submitted to the complete tracks of the
competition only, although the implementation supports partial
solving. However, the current implementation does not support
to forward a signal from the solver wrapper into the solver to
obtain the currently best known solution. Furthermore, support
for Top-K has not been integrated yet, also because the used
OPEN-WBO version does not support this feature.

Two variants of the solver have been submitted. The only
difference is the SAT backend, namely MINISAT 2.2 and
MERGESAT. The reason to submit these two solvers is to
show the performance difference when using a more recent
SAT backend.

III. AVAILABILITY

The solver SMAX is available under a MIT license in GitHub
at https://github.com/conp-solutions/smax. The repository is
setup to briefly check new changes with continuous integra-
tion.

https://github.com/conp-solutions/maxsat-fuzzer.git
https://github.com/conp-solutions/maxsat-fuzzer.git
https://github.com/conp-solutions/smax

class MaxSATSolver

/** Return codes for the caller to compute a MaxSAT solution */
enum ReturnCode

UNKNOWN = 0,
SATISFIABLE = 1,
UNSATISFIABLE = 2,
OPTIMAL = 3,
ERROR = 4,

;

/** This integer represents the version of the MaxSAT interface */
unsigned getVersion () const;

/** This string contains the name of the used backend */
const char* getSolverName () const;

/** Initialize the MaxSAT solver for a given formula */
MaxSATSolver(int nVars, int nClausesEstimate = 8192);

/** A call to this method frees all resources of the solver. */
˜MaxSATSolver();

/** Return error number code in case the last call to another method failed */
int getErrno() const;

/** Add a clause to the solver */
bool addClause(const std::vector<int> &literals, uint64_t weight = 0);

/** Add an at-most-k constraint to the solver */
bool addAtMostK(const std::vector<int> &literals, const unsigned k);

/** Compute a MaxSAT solution for the added (weighted) formula */
ReturnCode compute_maxsat(std::vector<int> &model,

uint64_t &cost,
uint64_t maxCost = UINT64_MAX,
const std::vector<int> *startAssignment = 0,
int64_t maxMinimizeSteps = -1);

Fig. 1. This figure briefly summaries the interface that is offered to the MaxSAT solver backend implementation. A well documented version of this file can
be found at https://github.com/conp-solutions/smax/blob/master/include/MaxSATSolver.h.

ACKNOWLEDGMENTS

The current solver uses OPEN-WBO as a backend engine,
and is heavily based on that solver. Hence, the contributors of
that solver own a large part of this tool: Ruben Martins, as well
as Miguel Terra-Neves, Vasco Manquinho and Inês Lynce.
Additionally, we would like to thank all the collaborators on
previous versions of OPEN-WBO, namely Saurabh Joshi and
Mikoláš Janota.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT. Springer,
2003, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[4] N. Manthey, “Mergesat,” in Proceedings of SAT Competition 2019: Solver
and Benchmark Descriptions, 2019.

[5] N. Sörensson, N. Een, and N. Manthey. (2018, May) GitHub repository
for MiniSat. https://github.com/conp-solutions/minisat.

[6] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT.
Springer, 2018, pp. 111–121.

https://github.com/conp-solutions/smax/blob/master/include/MaxSATSolver.h

	Introduction
	Solver Internals
	Solver Interface
	MaxSAT Solvers
	SAT Solvers
	Competition Tracks

	Availability
	References

