
RC2: a Python-based MaxSAT Solver
Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva

Faculty of Sciences, University of Lisbon, Portugal
{aignatiev,ajmorgado,jpms}@ciencias.ulisboa.pt

I. INTRODUCTION

RC2 is an open-source MaxSAT solver written in Python
and based on the PySAT framework1 [1]. It is designed to
serve as a simple example of how SAT-based problem solving
algorithms can be implemented using PySAT while sacrificing
just a little in terms of performance. In this sense, RC2 can
be seen as a solver prototype and can be made somewhat
more efficient if implemented in a low-level language. RC2
is written from scratch and implements the OLLITI (or RC2,
i.e. relaxable cardinality constraints) MaxSAT algorithm [2],
[3] originally implemented in the MSCG MaxSAT solver [3],
[4]. The RC2 algorithm proved itself efficient in the previous
editions of the MaxSAT Evaluation: namely in 2014, 2015,
and 2016 (see the results of the MSCG solver, which was one
of the best complete MaxSAT solvers in the aforementioned
competitions).

II. DESCRIPTION

RC2 supports incrementally a variety of SAT solvers pro-
vided by PySAT, and its competition version uses Glu-
cose 3.0 [5] as an underlying SAT oracle. Two variants of
the solver were submitted to the MaxSAT Evaluation 2018 in-
cluding RC2-A and RC2-B. Both of these versions implement
the same algorithm [2], [3] and share most of the techniques
used [3]. Their major components and differences are briefly
described below.

III. VARIANTS OF THE SOLVER

The following heuristics are used by both solver vari-
ants submitted to the MaxSAT Evaluation 2018: incremental
SAT solving [6], Boolean lexicographic optimization [7] and
stratification [8] for weighted instances, unsatisfiable core
exhaustion (originally referred to as cover optimization) [8].

Additionally, the following heuristic was used in both vari-
ants of RC2: given a set S of soft clauses, a number of subsets
S′ ⊆ S were identified such that at most one soft clause in
S′ can be satisfied, i.e.

∑
c∈S′ c ≤ 1. Every subset S′ can be

treated as an unsatisfiable core of cost |S′| − 1, which can be
represented as a single clause.

The only difference between the solver variants is the
policy for unsatisfiable core minimization. In contrast to RC2-
A, RC2-B applies heuristic unsatisfiable core minimization
done with a simple deletion-based minimal unsatisfiable subset
(MUS) extraction algorithm [9]. During the core minimization
phase in RC2-B, all SAT calls are dropped after obtaining 1000

1http://pysathq.github.io

conflicts. Note that core minimization in RC2-B is disabled
for large plain MaxSAT formulas, i.e. those having no hard
clauses but more than 100000 soft clauses. The reason is that
having this many soft clauses (and, thus, as many assumption
literals) and no hard clauses is deemed to make SAT calls too
expensive. Although core minimization is disabled in RC2-
A, reducing the size of unsatisfiable cores can be still helpful
for weighted instances due to the nature of the OLLITI/RC2
algorithm, i.e. because of the clause splitting applied to the
clauses of an unsatisfiable core depending on their weight.
Therefore, when dealing with weighted instances RC2-A trims
unsatisfiable cores at most 5 times (e.g. see [3] for details)
aiming at getting rid of unnecessary clauses. Note that core
trimming is disabled in RC2-A for unweighted MaxSAT
instances and it is not used in RC2-B at all.

IV. AVAILABILITY

RC2 is distributed as a part of the PySAT framework, which
is available under an MIT license at https://github.com/
pysathq/pysat. It can also be installed as a Python package
from PyPI:

pip install python-sat

The RC2 solver can be used as a standalone executable
rc2.py and can also integrated into a complex Python-based
problem solving tool, e.g. using the standard import interface
of Python:

from pysat.examples import rc2

REFERENCES

[1] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: a Python toolkit
for prototyping with SAT oracles,” in SAT, 2018, to appear.

[2] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in CP, 2014, pp. 564–573.

[3] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: Robust core-
guided MaxSAT solving,” JSAT, vol. 9, pp. 129–134, 2015.

[4] A. Ignatiev, A. Morgado, V. M. Manquinho, I. Lynce, and J. Marques-
Silva, “Progression in maximum satisfiability,” in ECAI, 2014, pp. 453–
458.

[5] G. Audemard, J. Lagniez, and L. Simon, “Improving Glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT, 2013, pp. 309–317.

[6] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

[7] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

[8] C. Ansótegui, M. L. Bonet, J. Gabàs, and J. Levy, “Improving WPM2
for (weighted) partial maxsat,” in CP, 2013, pp. 117–132.

[9] J. M. Silva, “Minimal unsatisfiability: Models, algorithms and applica-
tions (invited paper),” in ISMVL, 2010, pp. 9–14.

mailto:aignatiev@ciencias.ulisboa.pt
mailto:ajmorgado@ciencias.ulisboa.pt
mailto:jpms@ciencias.ulisboa.pt
http://pysathq.github.io
https://github.com/pysathq/pysat
https://github.com/pysathq/pysat

	Introduction
	Description
	Variants of the Solver
	Availability
	References

