
Open-WBO @ MaxSAT Evaluation 2019
Ruben Martins

rubenm@cs.cmu.edu
CMU, USA

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Miguel Terra-Neves, Vasco Manquinho, Inês Lynce
{neves,vmm,ines}@inesc-id.pt

INESC-ID/IST, Portugal

I. INTRODUCTION

Open-WBO [1] is an open source MaxSAT solver that
supports several MaxSAT algorithms [2], [3], [4], [5], [6], [7],
[8] and SAT solvers [9], [10], [11]. Open-WBO is particularly
efficient for unweighted MaxSAT and has been one of the
best solvers in the MaxSAT Evaluations from 2014 to 2017.
Three versions of Open-WBO were submitted to the MaxSAT
Evaluation 2019: open-wbo-g, open-wbo-ms and open-
wbo-ms-pre. The remainder of this document describes the
differences between these versions.

II. SAT SOLVERS

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [9], [12]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solvers. For the MaxSAT
Evaluation 2019, we use GLUCOSE 4.1 4.1 [10], [13], [14]
as the back-end SAT solver of the open-wbo-g version and
MERGESAT [11] as the back-end SAT solver of the versions
open-wbo-ms and open-wbo-ms-pre.

MERGESAT is a new CDCL solver developed by Norbert
Manthey and it is based on the SAT competition winner of
2018, MAPLELCMDISTCHRONOBT [15], and adds several
known techniques. For restarts, only partial backtracking is
used, learned clause minimization is implemented more ef-
ficiently, and also applies simplification again in case the
first swipe resulted in a simplification. Finally, the time-
based decision heuristic switch is made deterministic by using
solving steps. To support being used inside MaxSAT solvers,
the incremental search feature had to been enabled again.

III. MAXSAT ALGORITHMS

In this section we briefly describe the algorithms used for
the complete and incomplete tracks at the MSE2019.

A. Complete Track

For the complete track, OPEN-WBO uses a variant of
the unsatisfiability-based algorithm MSU3 [3] and the OLL
algorithm [7]. These algorithms work by iteratively refining
a lower bound λ on the number of unsatisfied soft clauses
until an optimum solution is found. Both MSU3 and OLL use
the Totalizer encoding for incremental MaxSAT solving [4].
For unweighted MaxSAT, we extended the incremental MSU3
algorithm [4] with resolution-based partitioning techniques [8].
We represent a MaxSAT formula using a resolution-based
graph representation and iteratively join partitions by using
a proximity measure extracted from the graph representation

of the formula. The algorithm ends when only one partition
remains and the optimal solution is found. Since the parti-
tioning of some MaxSAT formulas may be unfeasible or not
significant, we heuristically choose to run either MSU3 with
partitions or the OLL algorithm. In particular, we do not use
partition-based techniques when one of the following criteria
is met: (i) the formula is too large (> 1,000,000 clauses), (ii)
the ratio between the number of partitions and soft clauses is
too high (> 0.8), (iii) the sparsity of the graph is too small (<
0.04), or (iv) there exist some at-most-one relations between
soft clauses (> 10), i.e. if one soft clause is satisfied it implies
that some other soft clauses will be unsatisfied.

For weighted MaxSAT, we use a variant of the OLL
algorithm [7] without optimizations. Potential avenues for
improvements involve reusing the soft cardinality via as-
sumptions instead of cloning them [16], extending the OLL
algorithm to use lexicographic optimization [17], and perform
core minimization.

B. Incomplete Track

For the unweighted incomplete track, OPEN-WBO uses an
incremental variant of the MSU4 algorithm [18], [19] with
the incremental Totalizer encoding [4]. This is a complete
MaxSAT algorithm that performs a linear search SAT-UNSAT
but lazily expands the soft clauses that can be relaxed, i.e.
unsatisfied. This approach is particularly effective for bench-
marks with thousands of soft clauses [19].

For the weighted complete track, OPEN-WBO uses a vari-
ant of the lexicographical optimization algorithm [17] that
does not guarantee optimality [20], [21]. This algorithm con-
siders n objective functions where n is the number of distinct
weights in the MaxSAT formula. This is done by performing a
sequence of calls to a SAT solver and refining an upper bound
µ on the number of unsatisfied soft clauses. To restrict µ at
each iteration, we need to encode cardinality constraints into
CNF, for which, incremental Totalizer encoding [4] has been
used. Once for a given objective function the upper bound µ
cannot be improved, it is frozen, and the next objective func-
tion in the order is optimized. If an optimal solution is found
when using this algorithm, then it is not necessarily an optimal
solution of the input formula. Once this happens, we change
to a complete algorithm based on linear search SAT-UNSAT
that uses the Adder [22] or Generalized Totalizer encoding
(GTE) [23] to encode pseudo-Boolean constraints. In order to
maintain the lexicographic structure as long as possible, we



only relax the previous lexicographical restrictions if they are
the reason for unsatisfiability.

IV. PREPROCESSING

We integrated the MaxSAT preprocessor MaxPre [24] with
Open-WBO via MaxPre API into the version open-wbo-ms-
pre. To avoid spending too much time in preprocessing, we
limit the number of tries for each preprocessing technique
with the flag -skiptechnique=100 and the time limit
taken by the preprocessor to 10% of the total time (or 180
seconds if smaller). MaxPre can simplify the formula using
a variety of techniques, such as, blocked clause elimination,
unit propagation, bounded variable elimination, subsumption
elimination, self subsuming resolution, subsumed label elimi-
nation, binary core removal, bounded variable addition, group
subsumed label elimination, equivalence elimination, unhiding
techniques, structure labeling and failed label probing.

In addition to the simplifications performed by MaxPre,
we also perform identification of unit cores and at-most-one
relations between soft clauses by using unit propagation. A
similar technique is done in RC2 [25], the winner of the
MaxSAT Evaluation 2018.

V. AVAILABILITY

The latest release of Open-WBO is available under a MIT
license in GitHub at https://github.com/sat-group/open-wbo.

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use GLUCOSE 4.1 in the MaxSAT Evalu-
ation. We would also like to thank Niklas Eén and Niklas
Sörensson for the development of MINISAT 2.2. We would
like to thank Jeremias Berg and Matti Järvisalo for their help
with the MaxSAT preprocessor MaxPre. Additionally, we
would like to thank all the collaborators on previous versions
of OPEN-WBO, namely Saurabh Joshi and Mikoláš Janota.
Finally, we would like to thank David Chen for his study
on the impact of disjoint cores, unit cores, and at-most-one
relations between soft clauses that were done in the scope of
Independent Studies at CMU.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
Weighted Boolean Optimization,” in SAT. Springer, 2009, pp. 495–
508.

[3] J. Marques-Silva and J. Planes, “On Using Unsatisfiability for Solving
Maximum Satisfiability,” CoRR, 2007.

[4] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[5] R. Martins, V. Manquinho, and I. Lynce, “On Partitioning for Maximum
Satisfiability,” in ECAI. IOS Press, 2012, pp. 913–914.

[6] R. Martins, V. M. Manquinho, and I. Lynce, “Community-based parti-
tioning for maxsat solving,” in SAT. Springer, 2013, pp. 182–191.

[7] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-Guided MaxSAT
with Soft Cardinality Constraints,” in CP. Springer, 2014, pp. 564–573.

[8] M. Neves, R. Martins, M. Janota, I. Lynce, and V. M. Manquinho,
“Exploiting Resolution-Based Representations for MaxSAT Solving,” in
SAT. Springer, 2015, pp. 272–286.

[9] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

[10] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[11] N. Manthey, “Mergesat,” in Proceedings of SAT Competition 2019:
Solver and Benchmark Descriptions, 2019.

[12] N. Sörensson, N. Een, and N. Manthey. (2018, May) GitHub repository
for MiniSat. https://github.com/conp-solutions/minisat.

[13] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for in-
cremental sat solving with assumptions: Application to mus extraction,”
in SAT. Springer, 2013.

[14] G. Audemard and L. Simon. (2018, May) Glucose’s home page.
http://www.labri.fr/perso/lsimon/glucose.

[15] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT.
Springer, 2018, pp. 111–121.

[16] J. Berg and M. Järvisalo, “Weight-Aware Core Extraction in SAT-Based
MaxSAT Solving,” in CP. Springer, 2017, pp. 652–670.

[17] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

[18] J. Marques-Silva and J. Planes, “Algorithms for maximum satisfiability
using unsatisfiable cores,” in DATE. ACM, 2008, pp. 408–413.

[19] R. Martins, V. Manquinho, and I. Lynce, “Improving linear search
algorithms with model-based approaches for maxsat solving,” J. Exp.
Theor. Artif. Intell., vol. 27, no. 5, pp. 673–701, 2015. [Online].
Available: https://doi.org/10.1080/0952813X.2014.993508

[20] S. Joshi, P. Kumar, R. Martins, and S. Rao, “Approximation Strategies
for Incomplete MaxSAT,” in CP. Springer, 2018.

[21] S. Joshi, P. Kumar, S. Rao, and R. Martins, “Open-WBO-Inc: Approx-
imation Strategies for Incomplete Weighted MaxSAT,” in JSAT. IOS
Press, 2019.

[22] J. P. Warners, “A Linear-Time Transformation of Linear Inequalities
into Conjunctive Normal Form,” Information Processing Letters, vol. 68,
no. 2, pp. 63–69, 1998.

[23] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized Totalizer
Encoding for Pseudo-Boolean Constraints,” in CP. Springer, 2015,
pp. 200–209.

[24] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An
Extended MaxSAT Preprocessor,” in SAT. Springer, 2017, pp. 449–
456.

[25] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
Toolkit for Prototyping with SAT Oracles,” in Proc. SAT, ser. Lecture
Notes in Computer Science, O. Beyersdorff and C. M. Wintersteiger,
Eds., vol. 10929. Springer, 2018, pp. 428–437.

https://github.com/sat-group/open-wbo
https://doi.org/10.1080/0952813X.2014.993508

	Introduction
	SAT solvers
	MaxSAT Algorithms
	Complete Track
	Incomplete Track

	Preprocessing
	Availability
	References

