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Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, % is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause ¢ is the clause ¢ V —x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause ¢ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{xo, x1, 22,23}, ONE introduces the following constraint:

To+ i+ x2o+23+ Y1+ Y2+ Y3 >3
Y1 —7Y2 Y2 7 Y3
where y1, Y2, y3 are fresh variables (the new soft literals that

replace xg,x1,T2,x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing

y1 is subsequently found, and the third if a core containing y-
is subsequently found):

To+ a1+ 22+ 23+ Y1 >3
To+ 21 + T2+ X3 + Y2 > 2
To+ @1+ T2+ w3+ Yz > 1

Concerning PMRES, it introduces the following constraints:
i) \Y X1 V Y1
z1 V22V Yz
zo Va3V —y3
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which are essentially equivalent to the following constraints:
To +x1 + 221+ Yy > 2

21+ X + g+ Y2 > 2
22 + X3 + —ys > 1

Z1 — U1
Z2 — Y2

where y1, Y2, ys are fresh variables (the new soft literals that
replace xg, x1, 2, 3), and 21, 2o are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2- (k+ 1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = oo,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is £ = 2, which would
results in the following constraints:

1’0+1‘1+I2+_‘21+_‘y1+_'y223
Z1 + x3 + Y3 >1

21— Y1 Y1 — Y2

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k € O(logn), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduces the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Additionally, satisfiability
checks performed during the shrinking process are subject to
a budget on the number of conflicts, so that the overhead due
to hard checks is limited. Specifically, the budget is set to the
number of conflicts arose in the satisfiability check that lead
to detecting the unsatisfiable core; if such a number is less
than 1000 (one thousand), the budget is raised to 1000. The
budget is divided by 2 every time the progression is reiterated.

Weighted instances are handled by stratification and in-
troducing remainders [4]-[6]. Specifically, soft literals are



partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.
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