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Abstract. Most recent MaxSAT algorithms rely on a succession of calls
to a SAT solver in order to find an optimal solution. In particular, several
algorithms take advantage of the ability of SAT solvers to identify unsat-
isfiable subformulas. Usually, these MaxSAT algorithms perform better
when small unsatisfiable subformulas are found in early iterations of the
algorithm. However, this is not the case in many problem instances, since
the whole formula is given to the SAT solver in each call.
In this paper, we propose to partition the MaxSAT formula using a
resolution-based graph representation. Partitions are then iteratively joi-
ned by using a proximity measure extracted from the graph representa-
tion of the formula. The algorithm ends when only one partition remains
and the optimal solution is found. Experimental results show that this
new approach further enhances a state of the art MaxSAT solver to op-
timally solve a larger set of industrial problem instances.

1 Introduction

The improvements of Maximum Satisfiability (MaxSAT) technology in recent
years lead to a number of applications of MaxSAT. Many real-world prob-
lems in different areas such as fault localization in C programs, design de-
bugging, upgradability of software systems, among others, can now be solved
using MaxSAT [2,10,12,15,24]. In the last decade, several new techniques and
algorithms have been proposed that improved on previous MaxSAT solvers by
several orders of magnitude. Moreover, the developments in the underlying SAT
technology, namely identification of unsatisfiable subformulas and incrementality
have also been a factor in the improvements of MaxSAT solving.

MaxSAT solvers for industrial instances are usually based on iterative calls
to a SAT solver. Moreover, most of these MaxSAT algorithms take advantage
of the ability of SAT solvers to identify unsatisfiable subformulas. However, in
most cases, algorithms deal with the whole formula at each call of the SAT
solver. As a result, unnecessarily large unsatisfiable subformulas can be found at
each SAT call, resulting in a slow down of the MaxSAT algorithm. In this work,



we try to avoid this behavior by partitioning the formula and taking advantage
of structural information obtained from a formula’s graph representation.

In this paper, we improve on the current state of the art MaxSAT solving
by proposing a new unsatisfiability-based algorithm for MaxSAT. The new al-
gorithm integrates several new features, namely: (1) usage of resolution-based
graphs to represent the MaxSAT formula, (2) partition of soft clauses in the
MaxSAT formula using the referred representation, (3) usage of structural infor-
mation obtained from the graph representation to drive the merge of partitions
and, (4) integration of these features into a new fully incremental algorithm that
improves on one of the best non-portfolio solvers from the last MaxSAT Solver
Evaluation on several partial MaxSAT industrial benchmark sets.

The paper is organized as follows. Section 2 formally defines MaxSAT and
briefly reviews the MaxSAT algorithms more closely related to the proposed ap-
proach. In section 3, graph representations of CNF formulas are described. More-
over, the adaptation of resolution-based graphs is proposed. The new MaxSAT
algorithm is proposed in section 4. Besides a detailed description, we show how
to extract structural information from the graph representations and integrate
it in the new algorithm. Section 5 presents the experimental results of the new
MaxSAT solver on a large set of industrial benchmark sets used at MaxSAT
evaluations. Finally, the paper concludes in section 6.

2 Preliminaries

A propositional formula in Conjunctive Normal Form (CNF), using n Boolean
variables x1, x2, . . . , xn, is defined as a conjunction of clauses, where a clause
is a disjunction of literals. A literal is either a variable xi or its complement
x̄i. The Propositional Satisfiability (SAT) problem consists of deciding whether
there exists a total assignment to the variables such that the formula is satisfied.

The Maximum Satisfiability (MaxSAT) can be seen as an optimization ver-
sion of the SAT problem. In MaxSAT, the objective is to find a total assignment
to the variables of a CNF formula that minimizes the number of unsatisfied
clauses. Notice that minimizing the number of unsatisfied clauses is equivalent
to maximizing the number of satisfied clauses.

In a partial MaxSAT formula ϕ = ϕh ∪ ϕs, some clauses are considered as
hard (ϕh), while others are declared as soft (ϕs). The goal in partial MaxSAT is
to find a total assignment to the formula variables such that all hard clauses in
ϕh are satisfied, while minimizing the number of unsatisfied soft clauses in ϕs.
There are also weighted variants of MaxSAT where soft clauses are associated
with weights greater than or equal to 1. In this case, the objective is to satisfy
all hard clauses and minimize the total weight of unsatisfied soft clauses. In this
paper, we focus solely on partial MaxSAT, but the proposed approach can be
generalized to its weighted variants. Furthermore, in all algorithms we assume
that the set of hard clauses ϕh is satisfiable. Otherwise, the MaxSAT formula
does not have a solution. This can easily be checked through a SAT call on ϕh.



Algorithm 1: Linear Search Unsat-Sat Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ)← (ϕh, ∅, 0)
2 foreach ci ∈ ϕs do
3 VR ← VR ∪ {ri} // ri is a new relaxation variable
4 cR ← ci ∪ {ri}
5 ϕW ← ϕW ∪ {cR}
6 while true do
7 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
ri∈VR

ri ≤ λ)})
8 if st = SAT then
9 return ν // satisfying assignment to ϕ

10 λ← λ+ 1

The most recent state of the art MaxSAT solvers are based on iterative calls
to a SAT solver. One of the most classic approaches is the linear Sat-Unsat
algorithm that performs a linear search on the number of unsatisfied clauses.
In this case, a new relaxation variable is initially added to each soft clause and
the resulting formula is given to a SAT solver. Whenever a solution is found, a
new cardinality constraint on the number of relaxation variables is added, such
that solutions where a higher or equal number of relaxation variables assigned
the value 1 are excluded. The cardinality constraint is encoded into a set of
propositional clauses, which are added to the working formula [3,13,17]. The
algorithm stops when the SAT call is unsatisfiable. As a result, the last solution
found is an optimal solution of the MaxSAT formula.

A converse approach is the linear search Unsat-Sat presented in Algorithm 1.
Here, a lower bound λ on the number of unsatisfied soft clauses is maintained
between iterations of the algorithm. Initially, λ is assigned value 0. In each itera-
tion, while the working formula given to the SAT solver (line 7) is unsatisfiable, λ
is incremented (line 10). Otherwise, an optimal solution to the MaxSAT formula
has been found (line 9).

Observe that a SAT solver call on a CNF formula ϕW returns a triple (st, ν,
ϕC), where st denotes the status of the solver: satisfiable (SAT) or unsatisfiable
(UNSAT). If ϕW is satisfiable, then ν stores the total assignment found for ϕW .
Otherwise, ϕC contains an unsatisfiable subformula that explains a reason for
the unsatisfiability of ϕW .

Even though the linear search Unsat-Sat algorithm does not take advantage
of current SAT solvers being able to identify unsatisfiable subformulas, there are
several more effective algorithms for MaxSAT that use this information to delay
the relaxation of soft clauses. An example is the MSU3 algorithm [16] presented
in Algorithm 2. Observe that this algorithm also performs an Unsat-Sat linear
search, but soft clauses are only relaxed when they appear in an unsatisfiable
subformula. The MSU3 algorithm takes as input a MaxSAT formula ϕ, a set of
relaxation variables VR, and a given lower bound λ. If no structural information



Algorithm 2: MSU3 Algorithm
Input: (ϕ, VR, λ)
Output: satisfying assignment to ϕ

1 ϕW ← ϕ
2 while true do
3 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
ri∈VR

ri ≤ λ)})
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 foreach ci ∈ (ϕC ∩ ϕs) do
7 VR ← VR ∪ {ri} // ri is a new variable
8 cR ← ci ∪ {ri} // ci was not previously relaxed
9 ϕW ← (ϕW \ {ci}) ∪ {cR}

10 λ← λ+ 1

is known about ϕ, then MSU3 is called with the default values ϕ = ϕh ∪ ϕs,
VR = ∅ and λ = 0.

Although more sophisticated MaxSAT algorithms exist [20], an implementa-
tion of MSU3 algorithm on the Open-WBO framework was one of the best per-
forming non-portfolio algorithms for industrial partial MaxSAT at the MaxSAT
Solver Evaluation of 20141. One of the crucial features for its success relies on
the fact that only one SAT solver instance needs to be created [17]. Therefore,
a proper implementation of MSU3 should take advantage of incrementality in
SAT solver technology. In this paper, the MSU3 algorithm is further improved
with structural information of the problem instance to solve.

3 Graph Representations

In order to extract structural properties of CNF formulas, different graph-based
models have been previously proposed. For instance, graph representations have
been used to characterize industrial SAT instances [1] and to improve on the
performance of MaxSAT algorithms [19]. In this section, we briefly review the
Clause-Variable Incidence Graph (CVIG) and adapt the use of Resolution-based
Graphs (RES) [26] to model relations in CNF formulas. Although other models
exist [1,25,19], in the context of our algorithm for MaxSAT solving, these were
found to be the best suited.

In the CVIG model, a weighted undirected graph G is built such that a
vertex is added for each variable xj and for each clause ci occurring in the CNF
formula ϕ. Moreover, for each variable xj occurring in clause ci (either as literal
xj or x̄j), an edge (ci, xj) is added to graph G. The edge weight w(ci, xj) is
defined as:

w(ci, xj) =
I(xj)

|ci|
(1)

1 Results available at http://www.maxsat.udl.cat/

http://www.maxsat.udl.cat/
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Fig. 1. Example of Graph Models

where |ci| denotes the number of literals in clause ci and I(xj) is defined as the
incidence function of xj in soft clauses as:

I(xj) = 1 +
∑

xj∈c ∧ c∈ϕs

1

|c|
(2)

As described in section 2, several MaxSAT solvers rely on the identification of
unsatisfiable subformulas. In order to capture sets of clauses more closely related
that would result in an unsatisfiable subformula, we propose to adapt Resolution
Graphs (RES) to MaxSAT.

In the RES model, we have one vertex in graph G for each clause ci ∈ ϕ. Let
ci and cj denote two clauses such that xk ∈ ci and x̄k ∈ cj . Moreover, let cresij

be the resulting clause of applying the resolution operation on these clauses. In
this case, if cresij is not a tautology, then an edge (ci, cj) is added to G whose
weight is defined as:

w(ci, cj) =
1

|cresij |
(3)

Notice that in the RES model, clauses are related if the application of the
resolution operation results in a non-trivial resolvent. Moreover, observe that the
weight of edges between pairs of clauses is greater when the size of the resolvent
is smaller. The goal is to make tighter the relations between clauses that produce
smaller clauses when resolution is applied.

Consider the following MaxSAT formula where c1 : (x1∨x2), c2 : (x̄2∨x3) and
c3 : (x̄1∨x̄3) are hard clauses and c4 : (x̄1), c5 : (x̄3) are soft clauses. Figures 1(a)
and 1(b) illustrate the structure of the graph representation of this formula when
using the CVIG and RES models. The weights of edges are not represented for
simplicity but can be obtained via Equations (1) and (3). For example, for the
CVIG model w(c1, x1) = 2

2 and for the RES model w(c2, c3) = 1
2 . Observe that

if the clause c6 : (x̄1 ∨ x̄2) was added to the formula, it would not connect
to any other clause in the RES graph because the only clause containing x1
positively is c1 = (x1 ∨x2), but that does not connect to c6 due to x2 appearing
negatively and positively in c6 and c1, respectively. A similar type of analysis
is done in blocked clause elimination [14,11] — a technique commonly used in
formula preprocessing.



Algorithm 3: Extended MSU3 Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 γ ← 〈γ1, . . . , γn〉 ← partitionSoft(ϕs, ϕh)
2 foreach γi ∈ γ do
3 (V i

R, λi)← (∅, 0)
4 ν ← MSU3(ϕh ∪ γi, V i

R, λi)

5 if |γ| = 1 then
6 return ν // no partitions were identified
7 while true do
8 (γi, γj)← selectPartitions(γ)
9 γ ← γ \ {γi, γj}

10 (γk, V
k
R , λk)← (γi ∪ γj , V i

R ∪ V j
R, λi + λj)

11 ν ← MSU3(ϕh ∪ γk, V k
R , λk)

12 if γ = ∅ then
13 return ν

14 else
15 γ ← γ ∪ {γk}

Although resolution-based graphs are not novel [26] and have been used in
other domains [25], in this paper we propose to enhance the resolution-based
graph representation by adding weights to edges. Moreover, as far as we know,
this representation has never been used for MaxSAT solving.

4 New Partition-based Algorithm for MaxSAT

Despite its very good performance in industrial partial MaxSAT instances, the
MSU3 algorithm (see Algorithm 2) may suffer from two issues: (1) identification
of unnecessarily large unsatisfiable subformulas and, (2) a potentially large car-
dinality constraint to be maintained between iterations. In fact these issues are
related. If an unsatisfiable subformula with an unnecessarily large number of soft
clauses is encountered early, then an unnecessarily large cardinality constraint
has to be dealt with through most of the algorithm’s iterations.

Our approach to tackle these issues is to split the set of soft clauses. The
goal is that, at each iteration, the algorithm should only consider part of the
problem, instead of dealing with the whole problem instance in each iteration.

4.1 Algorithm Description

Algorithm 3 presents our enhancement of MSU3 with partitioning the soft clause
set. The algorithm starts by partitioning ϕs into n disjoint sets of soft clauses
γ1, γ2 . . . γn (line 1). Observe that several methods can be used to partition ϕs.
Details of this procedure are discussed later.



For each set γi, we apply the MSU3 algorithm to the formula ϕh ∪ γi with
starting values V i

R = ∅ and λi = 0 (lines 2-4). As a result, we obtain a lower
bound value λi associated with each set of soft clauses γi. If the partitioning
procedure creates a single partition, then the algorithm terminates (line 6). Oth-
erwise, it is necessary to build the solution of the MaxSAT instance by merging
the different sets of soft clauses.

The merge process works as follows. At each iteration, two sets of soft clauses
γi and γj are selected to be merged (line 8) and removed from γ. Let γk denote
the union of γi and γj . Since γi and γj are disjoint, we necessarily have that
λi + λj is a lower bound for γk. Hence, we can safely initialize λk = λi + λj
(line 10). Next, the lower bound λk is refined by applying the MSU3 algorithm
to ϕh ∪ γk with starting values V k

R = V i
R ∪ V

j
R and λk = λi + λj (line 11).When

set γ becomes empty, then all soft clauses were merged and the last solution
found is an optimal solution (line 13). Otherwise, there are still more sets to be
merged and γk is added to γ (line 15).

4.2 Partition and Merge of Soft Clauses

Algorithm 3 can be configured differently depending on two procedures: (1) how
the set of soft clauses is partitioned (line 1) and (2) how to merge two sets of
soft clauses (line 8).

In the partition procedure, our algorithm starts by representing the CNF
formula as a graph using one of the models described in section 3. Next, we apply
a community-finding algorithm on the graph representation that maximizes a
modularity measure [4] in order to obtain a graph partitioning.

Recently, the use of modularity measures has become widespread when an-
alyzing the structure of graphs, in particular for the identification of communi-
ties [7,23]. In fact, this has already been used in the analysis of SAT instances [1]
and to improve the initial unsatisfiability-based approach proposed by Fu and
Malik [6,19]. The purpose of the modularity measure is to evaluate the quality of
the partitions, where vertices inside a partition should be densely connected and
vertices assigned to different partitions should be loosely connected. However,
finding a set of partitions with an optimal modularity value is computationally
hard [5]. In our implementation, we use the approximation algorithm proposed
by Blondel et al. [4].

At each iteration in Algorithm 3, two partitions are selected to be merged.
One can devise several different criteria to select and merge the partitions of
soft clauses. In early attempts, the merge process was sequential [19]. Given n
partitions γ1, γ2 . . . γn, at iteration i (i ≤ n) of the algorithm, the first i partitions
γ1, γ2 . . . γi were merged sequentially.

Figure 2(a) illustrates the sequential merging procedure. Observe that the
sequential merging process is not balanced. This results in an early growth of
the identified subformulas and, as a result, an early growth of the cardinality
constraints to be maintained at each iteration of the algorithm.

In this paper, we propose a weighted balanced merge procedure that depends
on the strength of the graph connections between partitions. The goal is to delay
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Fig. 2. Examples of merge processes

having to deal with a large number of soft clauses, until the latter iterations of
the algorithm. Figure 2(b) illustrates the weighted balanced merging procedure.

Let G = (V,E) denote an undirected weighted graph where V is the set of
vertices and E the set of edges. Let w : E → R be a weight function for each edge
in the graph. The community-finding algorithm identifies a set of communities
C = {C1, C2, . . . , Cn} where every vertex u ∈ V is assigned to one and only one
community in C. Hence, since in both CVIG and RES model there is a node
for each propositional clause, one can build the partitions in a straightforward
manner. For each community Ci with vertices representing soft clauses, there is
a partition γi containing the respective soft clauses.

Based on the graph representation, one can define the strength of the connec-
tion between partitions. Let dij denote the strength between partition γi and γj .
One can define dij based on the weight between the vertices of their respective
communities Ci and Cj in the graph. Hence, dij can be defined as follows:

dij =
∑

u∈Ci∧v∈Cj

w(u, v) (4)

Considering that the graph is undirected, we necessarily have that dij = dji.
Given an initial set γ of n partitions γ1, γ2 . . . , γn, our algorithm applies a

greedy procedure that pairs all partitions γi and γj from γ to be merged, starting
with the pair with largest dij . After pairing all partitions in the initial set, we
perform the same procedure to the next n/2 partitions that result from the
initial merging iterations. This is iteratively applied until we only have a single
partition (see Figure 2(b)).

Observe that if partitions γi and γj are merged into a new partition γk,
then the connectivity strength dkl between γk to another partition γl is given by
dkl = dil + djl. This follows from the fact that the communities in the graph are
disjoint.

Finally, we would like to reference other solvers that split the set of soft
clauses by identifying disjoint unsatisfiable subformulas [8,21]. However, there are
major differences with regard to our proposed approach. First, our solver takes



advantage of an explicit formula representation to split the set of soft clauses,
instead of using the unsatisfiable subformulas provided by the SAT solver. More-
over, in our solver, the merge process is also guided by the explicit representation
of the formula.

Furthermore, in solvers where disjoint unsatisfiable subformulas are iden-
tified [8,21], the split occurs on the cardinality constraints at each iteration.
However, each SAT call still has to deal with the whole formula at each itera-
tion. In Algorithm 3, the SAT solver does not have to deal with all soft clauses
at each iteration, but only after the final merge step.

4.3 Algorithm Analysis

In this section a proof sketch of the correctness Algorithm 3, as well as an analysis
on the number of SAT calls is presented.

Proof (Correctness of Algorithm 3). As mentioned in section 2, we assume the set
of hard clauses ϕh is satisfiable. Otherwise, the MaxSAT formula is unsatisfiable.
This can be verified by a single SAT call on ϕh before applying Algorithm 3.

For the proof we adopt the following notation. For some set γi processed in
Algorithm 3, we write γRi ⊆ ϕs for the set of clauses that were relaxed in the
algorithm (but clauses in γRi do not contain the relaxation variables). We will
prove by induction the invariant that ϕh ∪ γRi cannot be satisfied unless at least
λi clauses are removed from γRi . The induction hypothesis is satisfied trivially
at the beginning of the algorithm as each λi is initialized to 0.

Consider the case where λi is augmented by 1 when ϕh∪γi∪{
∑

r∈V i
R
r ≤ λi}

is unsatisfiable. Let ϕC be the obtained unsatisfiable subformula from the SAT
call, let ϕR

C ⊆ ϕs be the soft clauses of ϕC that appear as relaxed in γi and let
ϕN
C = ϕs ∩ ϕC be the rest of the soft clauses in the unsatisfiable subformula

(not yet relaxed). From induction hypothesis ϕh ∪ϕR
C cannot be satisfied unless

at least λi clauses are removed from ϕR
C ⊆ γRi . Since ϕC is an unsatisfiable

subformula, it is impossible to satisfy ϕh ∪ ϕR
C ∪ ϕN

C by removing λi clauses
from ϕR

C . Now we need to also show that it is impossible to satisfy ϕh∪γRi ∪ϕN
C

by removing λi clauses from γRi ∪ ϕN
C (this is the new set of relaxed clauses).

Let us assume for contradiction that it is possible to satisfy γRi ∪ ϕN
C by

removing some set of clauses ξ s.t. |ξ| = λi. To show the contradiction we
consider two cases: (1) ξ ⊆ γi and (2) ξ * γi. Case (1) yields an immediate
contradiction as we would have not obtained unsatisfiability in the SAT call as
it would be possible to satisfy ϕh ∪ γRi by removing λi clauses from γRi . For
case (2) consider that there is a clause c ∈ ξ s.t. c is not yet relaxed, i.e. c /∈ γR.
This means that ϕh∪γRi is satisfiable after removing less than λi clauses, which
is a contradiction with the induction hypothesis.

To show that the invariant is preserved by the merge operation, we observe
that any merged γi and γj are disjoint and therefore so are γRi and γRj . In order
to satisfy ϕh∪ (γRi ∪γRj ), both ϕh∪γRi , ϕh∪γRj must be satisfied. Consequently,
at least λi + λj clauses must be removed from (γRi ∪ γRj ).

ut



Table 1. Experimental evaluation of Open-WBO’s MSU3 algorithm, Eva500a, MSCG
and 4 different configurations of the partition-based algorithm.

Instance Group Total MSU3 Eva500a MSCG S-CVIG S-RES W-CVIG W-RES
aes 7 1 1 1 1 1 1 1
atcoss/mesat 18 11 11 4 11 1 11 11
atcoss/sugar 19 12 11 4 12 3 12 12
bcp/fir 59 59 55 59 56 44 51 51
bcp/hipp-yRa1/simp 17 16 16 16 16 16 16 16
bcp/hipp-yRa1/su 38 35 34 33 34 34 35 33
bcp/msp 64 26 37 29 23 41 27 42
bcp/mtg 40 40 40 40 40 40 40 40
bcp/syn 74 43 48 47 47 48 46 49
circuit-trace-compaction 4 4 4 4 4 3 4 4
close-solutions 50 48 48 46 40 32 40 45
des 50 42 41 41 49 48 50 48
haplotype-assembly 6 5 5 5 5 5 5 5
hs-timetabling 2 1 1 0 1 1 1 1
mbd 46 45 42 43 44 45 45 45
packup-pms 40 40 40 40 40 40 40 40
pbo/mqc/nencdr 84 84 84 84 84 84 84 84
pbo/mqc/nlogencdr 84 84 84 84 84 84 84 84
pbo/routing 15 15 15 15 14 15 15 15
protein_ins 12 12 8 12 12 12 12 12
tpr/Multiple_path 48 48 44 42 48 48 48 48
tpr/One_path 50 50 50 50 50 50 50 50
Total 827 721 719 699 715 695 717 736

Finally, we note that the number of SAT calls performed by Algorithm 3
is larger than the MSU3 algorithm. Observe that the number of unsatisfiable
SAT calls is the same for both algorithms. Let λ be the number of unsatisfiable
soft clauses at any optimal solution of the MaxSAT instance. In this case, both
algorithms perform λ unsatisfiable SAT calls. However, while MSU3 performs
only one satisfiable SAT call, Algorithm 3 performs 2n−1, where n is the number
of identified partitions (line 1).

5 Experimental Results

In this section we compare different configurations of Algorithm 3 with the
top 3 non-portfolio solvers of the MaxSAT 2014 Evaluation’s industrial par-
tial MaxSAT category. The top 3 were Open-WBO’s MSU3 incremental algo-
rithm [18,17], Eva500a [22] and MSCG [9]. The new partition-based algorithm
is also implemented using the Open-WBO framework2.

The algorithms were evaluated running on the set union of the partial MaxSAT
industrial instances of the MaxSAT evaluations of 2012, 2013 and 2014. For each
instance, algorithms were executed with a timeout of 1800 seconds and a memory
limit of 4 GB. Similar resource limitations were used during the last MaxSAT
Evaluation of 2014. These tests were conducted on a machine with 4 AMD
Opteron 6376 (2.3 GHz) and 128 GB of RAM, running Debian jessie.

Table 1 presents the number of instances solved by each algorithm, per in-
stance set. Besides MSU3, Eva500a and MSCG, results for the best 4 config-
2 Available at http://sat.inesc-id.pt/open-wbo/

http://sat.inesc-id.pt/open-wbo/
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Fig. 3. Comparison between run times of S-RES and W-RES on des and bcp/msp
instance sets

urations of the partition-based enhanced MSU3 algorithm are shown. S-CVIG
applies the sequential merging of partitions using the CVIG graph model. S-
RES also applies sequential merging, but using the RES graph model. W-CVIG
and W-RES apply the weighted balanced merging of partitions, using the CVIG
and RES graph models, respectively. Note that all our implementations are fully
incremental, i.e. only one instance of the SAT solver is created throughout the
execution of the proposed algorithm. As with the MSU3 implementation on
Open-WBO, we take advantage of assumptions usage at each SAT call and in-
cremental encoding of cardinality constraints [17].

Results from Table 1 show that all variants of the partition-based algorithm
are competitive with the remaining state of the art algorithms. However, overall
results clearly show that W-RES outperforms all remaining algorithms, since it
is able to solve more instances in total. Moreover, results for the configurations
of partition-based algorithm also show that weight-based balanced merging of
partitions is preferable to sequential partitioning.

Considering that MSU3 is our base solver, most gains occur in instance sets
bcp/msp, bcp/syn and des. While in the bcp/syn and des instance sets, all
partition-based configurations perform better, in bcp/msp the resolution-based
graph partitioning allowed a significant performance boost.

Figures 3(a) and 3(b) compare the results of S-RES and W-RES on the des
and bcp/msp instance sets. In the des instances, the run time of sequential merg-
ing is slightly better, despite solving the same number of instances. Nevertheless,
in the bcp/msp instance set the weight-based balanced merging used in W-RES
clearly outperforms the sequential merging approach used in S-RES.

In Figures 4(a) and 4(b) we compare MSU3 and W-RES on the same bench-
mark sets. It can be observed that W-RES performs much better in these in-
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stances. In the des instance set, there are some instances where W-RES is not as
fast, since there is some time spent in finding partitions and additional SAT calls.
We note that there is always some time spent in building the graph, applying
the community finding algorithm and splitting the set of soft clauses. However,
this partitioning step is usually not very time consuming. Nevertheless, W-RES
is able to scale better and solve more instances. In the bcp/msp instances, the
proposed techniques allow W-RES to be much better than MSU3, as well as all
other algorithms tested.

Resolution-based graph models performed worst in the bcp/fir category. It
was observed that the modularity values obtained for the resolution-based graphs
were low in this particular instance set. As a result, the partitioning obtained
for S-RES and W-RES in bcp/fir instances is not as meaningful as for other
instance sets. When this occurs, it can deteriorate the algorithm’s performance,
since the partition-based algorithm performs more SAT calls than MSU3.

When considering all benchmark sets, W-CVIG and W-RES solve different
instances and the Virtual Best Solver3 (VBS) between them solves 747 instances
(11 more than W-RES). Furthermore, there are a few instances which are only
solved by MSU3 but not by W-CVIG nor W-RES. The VBS between MSU3,
W-CVIG, W-RES can solve 752 (5 more than the VBS between W-CVIG and
W-RES). Even though W-RES outperforms the remaining algorithms, this sug-
gests that dynamically choosing the partition type could further improve the
performance of the solver.

Finally, Figure 5 shows a cactus plot with the run times of all algorithms
considered in the experimental evaluation. Here we can observe that S-RES is
3 The Virtual Best Solver between a set of solvers shows the total number of instances
that can be solved by at least one of those solvers.
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Fig. 5. Cactus plot with the run times for MSU3, Eva500a, MSCG, S-CVIG, S-RES,
W-CVIG and W-RES.

much slower than W-RES, clearly showing the effectiveness of the newly pro-
posed weight-based merging. Overall, W-RES clearly outperforms the remaining
algorithms, being able to solve 700 instances in 300 seconds or less.

6 Conclusions and Future Work

In this paper we exploit resolution-based graph representations of CNF formulas
in order to develop a new state of the art algorithm for MaxSAT. In the proposed
approach, soft clauses are initially partitioned in disjoint sets by analyzing the
formula structure. The partitioning process is attained by applying a community-
finding algorithm on weighted resolution-based graphs. Next, at each iteration
of the algorithm, partitions are merged using structural information from the
graph representation until an optimal solution is found.

The proposed approach is novel in many aspects. First, the use of a resolution-
based graph representation allows to better model the interaction between clauses.
Furthermore, instead of applying a sequential merging process, the graph repre-
sentation is also used in a weight-based balanced merging procedure. Moreover,
since the algorithm does not have to deal with the whole formula at each iter-
ation, smaller unsatisfiable cores are identified. As a result from this process,
smaller cardinality constraints are encoded into CNF at each iteration, thus
improving the algorithm’s performance.



Experimental results obtained in industrial partial MaxSAT instances clearly
show the effectiveness of the proposed algorithm. As a result, our solver improves
upon one of the best non-portfolio solvers on the industrial partial category from
the 2014 MaxSAT solver evaluation.

The source code of the new solver will become available as part of the Open-
WBO framework. This will allow the research community to build upon the
current work to further improve MaxSAT solving.

As future work, we propose to extend the proposed approach for weighted
MaxSAT solving. Moreover, different model representations of CNF formulas are
to be tested, as well as new techniques for building and merging partitions of
soft clauses in MaxSAT formulas. Furthermore, the proposed techniques are not
exclusive to MSU3 and can also be integrated into other MaxSAT algorithms.
Additionally, these techniques can also be applied to other extensions of SAT.

Acknowledgments

This work was partially supported by DARPA MUSE award #FA8750-14-2-
0270, FCT grant POLARIS (PTDC/EIA-CCO/123051/2010), FCT grant AMOS
(CMUP-EPB/TIC/0049/2013), and national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013. The views,
opinions, and/or findings contained in this article are those of the authors and
should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

References

1. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The Community Structure of SAT For-
mulas. In: International Conference on Theory and Applications of Satisfiability
Testing. LNCS, vol. 7317, pp. 410–423. Springer (2012)

2. Asín, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and
MaxSAT. Annals of Operations Research 218(1), 71–91 (2014)

3. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Con-
straints. In: Principles and Practice of Constraint Programming. LNCS, vol. 2833,
pp. 108–122. Springer (2003)

4. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics 2008(10), P10008 (2008)

5. Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: Maximizing modularity is hard. arXiv: physics, 0608255 (2006)

6. Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: International
Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4121,
pp. 252–265. Springer (2006)

7. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

8. Heras, F., Morgado, A., Marques-Silva, J.: Core-Guided Binary Search Algorithms
for Maximum Satisfiability. In: AAAI Conference on Artificial Intelligence. AAAI
Press (2011)



9. Ignatiev, A., Morgado, A., Manquinho, V., Lynce, I., Marques-Silva, J.: Progression
in Maximum Satisfiability. In: European Conference on Artificial Intelligence. pp.
453–458. IOS Press (2014)

10. Janota, M., Lynce, I., Manquinho, V., Marques-Silva, J.: PackUp: Tools for Package
Upgradability Solving. Journal on Satisfiability, Boolean Modeling and Computa-
tion 8(1/2), 89–94 (2012)

11. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. LNCS, vol. 6015, pp. 129–144.
Springer (2010)

12. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Programming Language Design and Implementation. pp. 437–
446. ACM (2011)

13. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-
SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 8(1/2),
95–100 (2012)

14. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999)

15. Le Berre, D., Rapicault, P.: Dependency management for the eclipse ecosystem:
An update. In: International Workshop on Logic and Search

16. Marques-Silva, J., Planes, J.: On Using Unsatisfiability for Solving Maximum Sat-
isfiability. CoRR (2007)

17. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental Cardinality Con-
straints for MaxSAT. In: Principles and Practice of Constraint Programming.
LNCS, vol. 8656, pp. 531–548. Springer (2014)

18. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a Modular MaxSAT Solver.
In: International Conference on Theory and Applications of Satisfiability Testing.
LNCS, vol. 8561, pp. 438–445. Springer (2014)

19. Martins, R., Manquinho, V.M., Lynce, I.: Community-based partitioning for
maxsat solving. In: International Conference on Theory and Applications of Sat-
isfiability Testing. LNCS, vol. 7962, pp. 182–191. Springer (2013)

20. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534
(2013)

21. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to Core-Guided Binary
Search for MaxSAT. In: International Conference on Theory and Applications of
Satisfiability Testing. LNCS, vol. 7317, pp. 284–297. Springer (2012)

22. Narodytska, N., Bacchus, F.: Maximum Satisfiability Using Core-Guided MaxSAT
Resolution. In: AAAI Conference on Artificial Intelligence. pp. 2717–2723. AAAI
Press (2014)

23. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(026113) (2004)

24. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Formal Methods in
Computer-Aided Design. pp. 13–19. IEEE Computer Society (2007)

25. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Principles and Practice of Constraint Programming. LNCS, vol. 6876,
pp. 789–803. Springer (2011)

26. Yates, R.A., Raphael, B., Hart, T.P.: Resolution graphs. Artificial Intelligence 1(4),
257–289 (1970)


